Simplicity transformations for three-way arrays with symmetric slices

Jorge Tendeiro

University of Groningen

17 June 2011 / Classification Society Annual Meeting

Outline

(1) Introducing three-way arrays
(2) Methods to analyze three-way arrays
(3) Simplifying three-way arrays

4 Maximal simplicity
(5) Example of application: typical rank
(6) Conclusions. Considerations. Developments
(9) Introducing three-way arrays
(2) Methods to analyze three-way arrays
(3) Simplifying three-way arrays

4 Maximal simplicity
(5) Example of application: typical rank
(6) Conclusions. Considerations. Developments

Definition

Idea

- three-way arrays: generalize matrix structure to 3D
- loaf-of-bread structure

Unfolding a three-way array

Frontal slices (\mathbf{X}_{k})

$(3 \mathrm{D} \longrightarrow 2 \mathrm{D})$
Matricizing \mathbf{X}

Notation: $\underline{\mathbf{X}}=\left[\mathbf{X}_{1}|\cdots| \mathbf{X}_{K}\right]$

(1) Introducing three-way arrays

(2) Methods to analyze three-way arrays

(3) Simplifying three-way arrays

4 Maximal simplicity
(5) Example of application: typical rank

6 Conclusions. Considerations. Developments

PCA

X : matrix of order $I \times J$ ($I=$ subjects, $J=$ variables)
Goal: representation of variables in low-space dimension.

$$
x_{i j}=\sum_{r=1}^{R} a_{i r} b_{j r}+e_{i j}
$$

- $x_{i j}=$ score of subject i on variable j
- $a_{i r}=$ score of subject i on component r
- $b_{j r}=$ loading of variable j on component r
- $e_{i j}=$ residual error

PCA - other formulation

$$
\mathbf{X}=\sum_{r=1}^{R}\left(\mathbf{a}_{r} \circ \mathbf{b}_{r}\right)+\mathbf{E}
$$

\square

- $\mathbf{a}_{r} \circ \mathbf{b}_{r}$: rank-1 matrix
- PCA decomposes \mathbf{X} as a sum of rank-1 matrices
- $\operatorname{rank}(\mathbf{X})$: minimum R such that $\mathbf{E} \equiv \mathbf{0}$

CANDECOMP/PARAFAC (CP)

$\underline{\mathbf{X}}:$ array of order $I \times J \times K$ ($I=$ subjects, $J=$ variables, $K=$ situations $)$
Goal: find components for subjects, variables and situations.

$$
x_{i j k}=\sum_{r=1}^{R} a_{i r} b_{j r} c_{k r}+e_{i j k},
$$

\square

- $x_{i j k}=$ score of subject i on variable j on situation k
- $a_{i r}=$ score of subject i on component r
- $b_{j r}=$ loading of variable j on component r
- $c_{k r}=$ loading of situation k on component r
- $e_{i j k}=$ residual error

CP - other formulation

$$
\underline{\mathbf{X}}=\sum_{r=1}^{R}\left(\mathbf{a}_{r} \circ \mathbf{b}_{r} \circ \mathbf{c}_{r}\right)+\underline{\mathbf{E}}
$$

- $\mathbf{a}_{r} \circ \mathbf{b}_{r} \circ \mathbf{c}_{r}:$ rank-1 array
- CP decomposes \underline{X} as a sum of rank-1 arrays
- $\operatorname{rank}(\underline{\mathbf{X}}):$ minimum R such that $\underline{\mathbf{E}} \equiv \mathbf{0}$

Tucker3

X : array of order $I \times J \times K$ ($I=$ subjects, $J=$ variables, $K=$ situations) Goal: find components for subjects, variables and situations.

$$
x_{i j k}=\sum_{p=1}^{P} \sum_{q=1}^{Q} \sum_{r=1}^{R} g_{p q r}\left(a_{i p} b_{j q} c_{k r}\right)+e_{i j k},
$$

- $x_{i j k}=$ score of subject i on variable j on situation k
- $a_{i p}=$ score of subject i on component p
- $b_{j q}=$ loading of variable j on component q
- $c_{k r}=$ loading of situation k on component r
- $g_{p q r}=$ weight (core array $\underline{\mathbf{G}}$, order $P \times Q \times R$)
- $e_{i j k}=$ residual error

Tucker3 - other formulations

$$
\underline{\mathbf{X}}=\sum_{p=1}^{P} \sum_{q=1}^{Q} \sum_{r=1}^{R} g_{p q r}\left(\mathbf{a}_{p} \circ \mathbf{b}_{q} \circ \mathbf{c}_{r}\right)+\underline{\mathbf{E}}
$$

- $\mathbf{a}_{r} \circ \mathbf{b}_{r} \circ \mathbf{c}_{r}$: rank-1 array
- Tucker3 decomposes $\underline{\mathbf{X}}$ as a sum of rank-1 arrays
- $\operatorname{rank}(\underline{\mathbf{X}}) \leqslant P Q R$ (usually $\operatorname{rank}(\underline{\mathbf{X}}) \ll P Q R$)

Formula using unfolded notation

$$
\begin{aligned}
& \underline{\mathbf{X}}(I \times J \times K) \longrightarrow \\
& \mathbf{G}=\left[\mathbf{X}_{1}\left|\mathbf{X}_{2}\right| \cdots \mid \mathbf{X}_{K}\right] \text { (fitted part) } \\
& \underline{\mathbf{G}}(P \times Q \times R) \longrightarrow \mathbf{G}=\left[\mathbf{G}_{1}\left|\mathbf{G}_{2}\right| \cdots \mid \mathbf{G}_{R}\right] \\
& \mathbf{X}=\mathbf{A G}\left(\mathbf{C}^{\prime} \otimes \mathbf{B}^{\prime}\right)
\end{aligned}
$$

Tucker3 - seeing CP as particular situation

- Tucker3 reduces to Candecomp/Parafac when the core array has a super-diagonal form:

$$
\underline{\mathbf{G}}=\left[\begin{array}{cccc|cccc}
1 & 0 & \cdots & 0 & 0 & 0 & \cdots & 0 \\
0 & 0 & \cdots & 0 & 0 & 1 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & 0 & 0 & 0 & \cdots & 0
\end{array}|\cdots| \begin{array}{cccc}
0 & 0 & \cdots & 0 \\
0 & 0 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & 1
\end{array}\right]
$$

- only interactions between corresponding components are accounted for in CP

Tucker3 - freedom of rotation

PCA's freedom of rotation (motivation)
S nonsingular

$$
\begin{aligned}
\mathbf{X} & =\mathbf{A} \mathbf{B}^{\prime} \\
& =(\mathbf{A S})\left(\mathbf{S}^{-1} \mathbf{B}^{\prime}\right)
\end{aligned}
$$

Tucker3's freedom of rotation
$\mathbf{S}, \mathbf{T}, \mathbf{U}$ nonsingular

$$
\begin{aligned}
\mathbf{A} & \longrightarrow \mathbf{A}\left(\mathbf{S}^{\prime}\right)^{-1} \\
\mathbf{B} & \longrightarrow \mathbf{B}\left(\mathbf{T}^{\prime}\right)^{-1} \\
\mathbf{C} & \longrightarrow \mathbf{C}\left(\mathbf{U}^{\prime}\right)^{-1} \\
\mathbf{G}_{a}=\left[\mathbf{G}_{1}|\cdots| \mathbf{G}_{R}\right] & \longrightarrow \mathbf{S}^{\prime} \mathbf{G}_{a}(\mathbf{U} \otimes \mathbf{T})
\end{aligned}
$$

Tucker transformation
(2) Methods to analyze three-way arrays
(3) Simplifying three-way arrays

4 Maximal simplicity
(5) Example of application: typical rank
(C) Conclusions. Considerations. Developments

Simplifying three-way arrays

Goal

Find suitable linear combinations of frontal (and/or lateral and/or horizontal) slices that allow transforming $\underline{\mathbf{X}}$ into an "equivalent" array with many zero entries.

Simplifying three-way arrays

Goal

Find suitable linear combinations of frontal (and/or lateral and/or horizontal) slices that allow transforming $\underline{\mathbf{X}}$ into an "equivalent" array with many zero entries.

Formally: S, $\mathbf{T}, \mathbf{U}=$?: $\quad \mathbf{H}=\underset{\downarrow}{\mathbf{S X}}(\mathbf{U} \otimes \mathbf{T})$

- many zero entries = few nonzero entries
- weight of $\underline{\boldsymbol{H}}=\#$ nonzero entries of $\underline{\boldsymbol{H}}$

Simplifying three-way arrays

```
Why?
```

(1) Facilitate interpretation of 3PCA decompositions

Example: rotate $\underline{\mathbf{G}}$ so that several entries become zero

(2) Constrained 3PCA: distinguish between tautologies and non-trivial models
(3) Mathematical applications: typical rank, maximal rank

Simplifying three-way arrays

Why?

(1) Facilitate interpretation of 3PCA decompositions

Example: rotate \underline{G} so that several entries become zero

(2) Constrained 3PCA: distinguish between tautologies and non-trivial models
(3) Mathematical applications: typical rank, maximal rank

Simplifying three-way arrays

Why?

(1) Facilitate interpretation of 3PCA decompositions

Example: rotate \underline{G} so that several entries become zero

(2) Constrained 3PCA: distinguish between tautologies and non-trivial models
(3) Mathematical applications: typical rank, maximal rank

Some examples (I-III)

- Cohen (1974, 1975), MacCallum (1976), Kroonenberg (1983): "diagonalize" frontal slices of $\underline{\mathbf{G}}(P=Q)$
- Kiers (1992): "super-diagonalize" $\underline{\mathbf{G}}(P=Q=R)$
- Kiers (1998): SIMPLIMAX
$\underline{\mathbf{G}} \longrightarrow$ minimize ssq (m smallest elements)

\underline{X} of order $P \times Q \times R, P=Q R$

Example: $\underline{\mathbf{X}}$ of order $6 \times 3 \times 2$

$$
\underline{\mathbf{X}} \longrightarrow\left[\begin{array}{lll|lll}
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right]=\mathbf{X}^{-1} \mathbf{X}\left(\mathbf{I}_{2} \otimes \mathbf{I}_{3}\right)
$$

Some examples (II-III)

X of order $P \times Q \times R, P=Q R-1$

Murakami, Ten Berge \& Kiers (1998)
Example: \mathbf{X} of order $5 \times 3 \times 2$

$$
\underline{\mathbf{x}} \longrightarrow\left[\begin{array}{ccc|ccc}
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 \\
\mu_{1} & 0 & 0 & 0 & \mu_{2} & 0
\end{array}\right]
$$

Some examples (III-III)

$\underline{\mathrm{X}}$ of order $P \times Q \times 2$

- $P>Q$: Ten Berge \& Kiers (1999)

$$
\underline{\mathbf{x}} \longrightarrow\left[\begin{array}{c|c}
\mathbf{I}_{Q} & \mathbf{0} \\
\hline \mathbf{0} & \mathbf{I}_{Q}
\end{array}\right]
$$

- $P=Q$: Rocci \& Ten Berge (2002) Example: $\underline{\mathbf{X}}=\left[\mathbf{X}_{1} \mid \mathbf{X}_{2}\right]$ of order $3 \times 3 \times 2$

$$
\begin{gathered}
{\left[\begin{array}{ccc|ccc}
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & \mu_{1} & 0 & 0 & \mu_{2}
\end{array}\right]}
\end{gathered} \text { or }\left[\begin{array}{ccc|ccc}
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & \mu \\
0 & 0 & 1 & 0 & -\mu & 0
\end{array}\right]
$$

Our goal: simplifying arrays with SYMMETRIC slices

Example: set of similarity matrices over time

Symmetric-slice arrays

- $\underline{\mathbf{X}}=\left[\mathbf{X}_{1}|\cdots| \mathbf{X}_{K}\right]$: order $I \times I \times K$
- assume: $\underline{\mathbf{X}}$ is randomly sampled from a continuous distribution with symmetry constraint (\mathbf{X}_{k} symmetric, $\forall k$)
- slices X_{k} linearly independent
- number of slices: $K=1,2, \ldots, \underbrace{\frac{I(I+1)}{2}}_{K_{\max }}$
- symmetry-preserving transformation of $\underline{\mathbf{X}}$
- $\mathbf{S}_{I \times I}, \mathbf{U}_{K \times K}$ nonsingular

$$
\mathbf{H}_{l}=\mathbf{S}^{\prime}\left(\sum_{k} u_{k l} \mathbf{x}_{k}\right) \mathbf{S}, \quad I=1,2, \ldots, K
$$

- GOAL: introduce as many zeros in $\underline{\mathbf{H}}$ as possible
- Orthogonal Complement Method: "symmetric" version

Symmetric slice $I \times I \times K_{\max }$ arrays

- $\{$ frontal slices $\}=$ basis for the space of symmetric $I \times I$ matrices
- simple basis for the same space (Rocci \& Ten Berge(1994)): (notation: $\mathbf{e}_{i}=$ column i of \mathbf{I}_{I})

$$
\begin{gathered}
\mathbf{e}_{i} \mathbf{e}_{i}^{\prime}, \quad i=1, \ldots, l \\
\mathbf{e}_{i} \mathbf{e}_{j}^{\prime}+\mathbf{e}_{j} \mathbf{e}_{i}^{\prime}, \quad 1 \leqslant i<j \leqslant l
\end{gathered}
$$

Example: $I=3$

$$
\begin{aligned}
& {\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right],\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right],\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 1
\end{array}\right]} \\
& {\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right],\left[\begin{array}{lll}
0 & 0 & 1 \\
0 & 0 & 0 \\
1 & 0 & 0
\end{array}\right],\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right]}
\end{aligned}
$$

- frontal slice mix suffices

Symmetric slice $3 \times 3 \times K$ arrays

- $K_{\max }=6$, so $K=1,2,3,4,5,6$
- $3 \times 3 \times 6$: done ($K_{\max }$ situation)
- $3 \times 3 \times 1$: use EVD

$$
\underline{\mathbf{x}} \longrightarrow\left[\begin{array}{ccc}
d_{1} & 0 & 0 \\
0 & d_{2} & 0 \\
0 & 0 & d_{3}
\end{array}\right] ; \text { if } d_{2} d_{3}<0:\left[\begin{array}{ccc}
d_{1} & 0 & 0 \\
0 & 0 & 2 d_{2} \\
0 & 2 d_{2} & 0
\end{array}\right]
$$

- $3 \times 3 \times 5=$ orthogonal complement of $3 \times 3 \times 1$

$$
\begin{aligned}
\mathbf{X} \longrightarrow & {\left[\begin{array}{lll|lll|lll|lll|lll}
1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & \alpha & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & \beta & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0
\end{array}\right] } \\
& {\left[\begin{array}{lll|lll|lll|lll|lll}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & \alpha & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0
\end{array}\right] }
\end{aligned}
$$

Conclusion for $3 \times 3 \times 5$:

- weight 10 is always possible
- if $\underline{\mathbf{X}}^{\text {c }}$ has eigenvalues of both signs then weight 9 is possible

Symmetric slice $3 \times 3 \times K$ arrays

- $3 \times 3 \times 2$: see $\operatorname{EVD}\left(\mathbf{X}_{1}^{-1} \mathbf{X}_{2}\right)$
- real eigenvalues

$$
\underline{\mathbf{X}} \longrightarrow\left[\begin{array}{lll|lll}
0 & 0 & 0 & \beta & 0 & 0 \\
0 & \alpha & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 1
\end{array}\right] ; \text { also: }\left[\begin{array}{ccc|ccc}
-\alpha & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 & 1 & 0
\end{array}\right]
$$

- complex eigenvalues

$$
\underline{\mathbf{x}} \longrightarrow\left[\begin{array}{ccc|ccc}
-\alpha & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 1 \\
0 & 0 & -1 & 0 & 1 & 0
\end{array}\right]
$$

Conclusion for $3 \times 3 \times 2$:

- weight 5 is always possible
- if $\mathbf{X}_{1}^{-1} \mathbf{X}_{2}$ has real eigenvalues then weight 4 is possible

Symmetric slice $3 \times 3 \times K$ arrays

- $3 \times 3 \times 4=$ orthogonal complement of $3 \times 3 \times 2$

$$
\left[\begin{array}{ccc|ccc|ccc|ccc}
1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\
0 & \alpha & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & \delta \alpha & 0 & 0 & 0 & 1 & 0 & 0
\end{array}\right]
$$

($\delta=1 /-1$ in real/complex case)
Conclusion for $3 \times 3 \times 4$:

- weight 8 is always possible
- $3 \times 3 \times 3$: still open!
- when a $3 \times 3 \times 3$ array has an orthogonal complement, it is also $3 \times 3 \times 3 \ldots$
- simulation: a weight 9 pattern seems to be possible almost 90% of the times
- to be continued (...)

Symmetric slice $4 \times 4 \times K$ arrays

- $K_{\max }=10$, so $K=1,2, \cdots, 8,9,10$
- $4 \times 4 \times 10$: done ($K_{\max }$ situation)
- $4 \times 4 \times 1$: use EVD

in general: $\underline{\mathbf{X}}$	$\longrightarrow\left[\begin{array}{cccc}d_{1} & 0 & 0 & 0 \\ 0 & d_{2} & 0 & 0 \\ 0 & 0 & d_{3} & 0 \\ 0 & 0 & 0 & d_{4}\end{array}\right]$
if $d_{1}, d_{2}, d_{3}>0$	
$d_{4}<0$	$\longrightarrow\left[\begin{array}{cccc}d_{1} & 0 & 0 & 0 \\ 0 & d_{2} & 0 & 0 \\ 0 & 0 & 0 & 2 d_{3} \\ 0 & 0 & 2 d_{3} & 0\end{array}\right]$
if $d_{1}, d_{3}>0$	
$d_{2}, d_{4}<0$	$\longrightarrow\left[\begin{array}{cccc}2 d_{1} & 0 & 0 \\ 2 d_{1} & 0 & 0 & 0 \\ 0 & 0 & 0 & 2 d_{3} \\ 0 & 0 & 2 d_{3} & 0\end{array}\right]$

- $4 \times 4 \times 9=$ orthogonal complement of $4 \times 4 \times 1$
- weight 18 is always possible
- depending on the signs of eigs $\left(\mathbf{X}^{c}\right)$ we can have weight 17 or 16

Symmetric slice $4 \times 4 \times K$ arrays

- $4 \times 4 \times 2$: see $\operatorname{EVD}\left(X_{1}^{-1} X_{2}\right)$
- real eigenvalues: weight 6

$$
\left[\begin{array}{llll|llll}
0 & 0 & 0 & 0 & \gamma & 0 & 0 & 0 \\
0 & \alpha & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & \beta & 0 & 0 & 0 & \delta & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 1
\end{array}\right]
$$

- one pair of complex eigenvalues: weight 7

$$
\left[\begin{array}{cccc|cccc}
\alpha & 0 & 0 & 0 & \gamma & 0 & 0 & 0 \\
0 & \beta & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & -1 & 0 & 0 & 1 & 0
\end{array}\right]
$$

- two pairs of complex eigenvalues: weight 8

$$
\left[\begin{array}{cccc|cccc}
1 & 0 & 0 & 0 & 0 & \gamma & 0 & 0 \\
0 & -1 & 0 & 0 & \gamma & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & -1 & 0 & 0 & 1 & 0
\end{array}\right]
$$

Symmetric slice $4 \times 4 \times K$ arrays

- $4 \times 4 \times 8=$ orthogonal complement of $4 \times 4 \times 2$
- any symmetric slice $4 \times 4 \times 8$ array can almost surely be simplified into one out of two weight 18 arrays

Example: one of the targets

$$
\left[\begin{array}{cccc|cccc|cccc|cccc|c}
\star & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \star & 0 & 0 & \\
0 & \star & 0 & 0 & 0 & \star & 0 & 0 & 0 & \star & 0 & 0 & \star & 0 & 0 & 0 & \\
0 & 0 & 0 & \star & 0 & 0 & \star & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \\
0 & 0 & \star & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \star & 0 & 0 & 0 & 0 & \\
\\
& 0 & 0 & \star & 0 & 0 & 0 & 0 & \star & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
& 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \star & 0 & 0 & 0 & 0 & \star \\
& \star & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \star & 0 & 0 & 0 & 0 & 0 & 0 \\
& 0 & 0 & 0 & 0 & \star & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \star & 0 & 0
\end{array}\right], ~=
$$

(1) Introducing three-way arrays

(2) Methods to analyze three-way arrays

(3) Simplifying three-way arrays

(5) Example of application: typical rank
6) Conclusions. Considerations. Developments

Maximal simplicity

Question: can simpler targets be found for the cases previously presented?

Answer:

- $3 \times 3 \times K$ for $K=1,2,4,5,6: N O($ proved $)$
- $4 \times 4 \times K$ for $K=8,9: N O(?)$ (simulation)

Maximal simplicity

Question: can simpler targets be found for the cases previously presented?

Answer:

- $3 \times 3 \times K$ for $K=1,2,4,5,6$: NO (proved)
- $4 \times 4 \times K$ for $K=8,9: \mathrm{NO}(?)$ (simulation)

(1) Introducing three-way arrays

(2) Methods to analyze three-way arrays

(3) Simplifying three-way arrays

4 Maximal simplicity

(5) Example of application: typical rank

6 Conclusions. Considerations. Developments

Example of application: typical rank

- X: symmetric slice $3 \times 3 \times 4$ array
- Ten Berge et al. (2004)
typical rank $(\underline{\mathbf{X}})=\{4,5\}$
- rank=4?, rank=5?

Check if roots of a certain fourth degree polynomial are real and distinct.

Example: rank=4

Example of application: typical rank

- X: symmetric slice $3 \times 3 \times 4$ array
- Ten Berge et al. (2004)

$$
\text { typical rank }(\underline{\mathbf{X}})=\{4,5\}
$$

- rank=4?, rank=5?

Check if roots of a certain fourth degree polynomial are real and distinct.

Using $<3 \times 3 \times 4$ simple form, and applying the same reasoning as in Ten Berge et al. (2004), we conclude that:

- rank $(\underline{\mathbf{X}})=4$ iif $\delta=1$ and $\alpha>0$ (and rank is 5 otherwise)
- a CP decomposition is now straightforward

Example: rank=4

$$
\boldsymbol{A}=\left[\begin{array}{cccc}
1 & 1 & 1 & 1 \\
0 & 0 & \sqrt{\alpha} & -\sqrt{\alpha} \\
\sqrt{\alpha} & -\sqrt{\alpha} & 0 & 0
\end{array}\right], \mathbf{C}=\left[\begin{array}{cccc}
0 & 0.5 & 0.5 \\
0.5 & 0 & 0 \\
0 & 0.5 & 0 & 0.5 \sqrt{\alpha^{-1}} \\
0.0 .5 \sqrt{\alpha-1} \\
0.5 \sqrt{\alpha^{-1}} & -0.5 \sqrt{\alpha-1} & 0 & 0
\end{array}\right]
$$

(1) Introducing three-way arrays
(2) Methods to analyze three-way arrays
(3) Simplifying three-way arrays
(4) Maximal simplicity
(5) Example of application: typical rank
(6) Conclusions. Considerations. Developments

Conclusions. Considerations. Developments

Conclusions

- simplification achieved for some types of arrays with symmetric frontal slices; closed form rotation matrices available
- maximal simplicity achieved (mathematically proved or empirically verified via SIMPLIMAX)
- typical rank considerations come as nice follow-ups
\square
- valid contribution for Matrix Theory: simultaneous reduction of more than a pair of matrices to sparse forms is scarce
- extend results to other orders
- address issues like: maximal simplicity, typical rank

Conclusions. Considerations. Developments

Conclusions

- simplification achieved for some types of arrays with symmetric frontal slices; closed form rotation matrices available
- maximal simplicity achieved (mathematically proved or empirically verified via SIMPLIMAX)
- typical rank considerations come as nice follow-ups

Considerations

- 3PCA core arrays are not "randomly sampled from a continuous distribution", but do behave as if they were
- valid contribution for Matrix Theory: simultaneous reduction of more than a pair of matrices to sparse forms is scarce
- extend results to other orders
- address issues like: maximal simplicity, typical rank

Conclusions. Considerations. Developments

Conclusions

- simplification achieved for some types of arrays with symmetric frontal slices; closed form rotation matrices available
- maximal simplicity achieved (mathematically proved or empirically verified via SIMPLIMAX)
- typical rank considerations come as nice follow-ups

Considerations

- 3PCA core arrays are not "randomly sampled from a continuous distribution", but do behave as if they were
- valid contribution for Matrix Theory: simultaneous reduction of more than a pair of matrices to sparse forms is scarce

Developments

- extend results to other orders
- address issues like: maximal simplicity, typical rank

