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Definition

Idea
three-way arrays:
generalize matrix
structure to 3D
loaf-of-bread
structure

Examples of three-way
data

different anxiety
measures, different
circumstances, various
subjects
sales of different
products, in different
shops, in different
weeks
job requirements for
various jobs, according
to various job analysts
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SLICES of a three-way array

Three-way array

Horizontal slices (Xi )

Lateral slices (Xj )

Frontal slices (Xk )
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FIBERS of a three-way array
Three-way array

Horizontal fibers (xik )

Vertical fibers (xjk )

Depth fibers (xij )
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Unfolding/matricizing a three-way array

Frontal slices (Xk )

Matricizing X
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PCA

Two-way array = data matrix
Scores of subjects (rows) on variables (columns).

XI subjects

J variables

= A

B'

+ EAB'

scores
matrix

loadings
matrix

residuals
matrix

�� ��X = AB′ + E . . .
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PCA: goal

Goal
Representation of variables in low-dimension space:�� ��R = # columns of A and B < J = # columns of X

X : I × J matrix of rank J; AB' : I × J matrix of rank R

So X is approximated by a matrix with lower rank, ie, X is
approximated by a sum of R rank-1 matrices:�� ��X ' a1b′1 + · · ·+ aRb′R
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CANDECOMP/PARAFAC (CP)

X: I × J × K array (I=subjects, J=variables, K =situations)

Goal: find components for subjects, variables and situations.

�� ��Xk = ACkB′ + Ek
PCA

. . .

Ck=diagonal matrix holding k -th row of C

Xk ' ck1a1b′1 + · · ·+ ckRaRb′R
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CANDECOMP/PARAFAC (CP)

Parallel proportional profiles (Cattell 1944)
To simultaneously analyse several matrices together, find a set
of common factors (A, B) that can be fitted with different
weights (Ck , k = 1, . . . ,K ) to many data matrices at the same
time.
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CANDECOMP/PARAFAC (CP)

Similarities between PCA and CP
CP decomposes an array as a sum of rank one arrays
rank(X)=minimum number of rank one arrays for which CP
gives perfect fit

Differences between PCA and CP
only iterative algorithm for CP
CP is usually unique
preprocessing three-way data hard
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INDSCAL

S: I × I × K array with symmetric slices (set of correlation
matrices, for example)

INDSCAL is CP with the constraint A = B:�� ��Sk = ACkA′ + Ek
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Tucker3
X: I × J × K array (I=subjects, J=variables, K =situations)

Goal: find components for subjects, variables and situations.�
�

�
�Xk = A

(
R∑

r=1

ckr Gr

)
B′ + Ek

CP
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Tucker3

Features of Tucker3

A, B, C can have different number of components

All components can interact (one per mode)

Tucker3 decomposes X as a sum of rank-1 arrays (built
from A,B,C), weighted by the entries in core array G
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Tucker3 – freedom of rotation

PCA’s freedom of rotation (motivation)
S nonsingular �

�
�
�

∼
X = AB′

= (AS)(S−1B′)

It is possible to “shuffle”(=invertible linear combination) the
columns of A and B such that AB′ remains equal.

Tucker3’s freedom of rotation
It is possible to “shuffle” the columns of A, B, C and preserve
the fit, letting G absorb the compensations (and vice-versa).
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Simplifying three-way arrays

Goal
Given array X, find nonsingular linear combinations of the slices
of X (in any direction possible) such that most of the entries of
the array become zero.

Why?
Statistical reasons:

Tucker3: simpler core G =⇒ usually simpler interpretation
constrained Tucker3: distinguish between tautology and
non-trivial model

Mathematical reasons:
typical rank, maximal rank, maximal simplicity
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Some results available so far

Cohen (1974, 1975), MacCallum (1976), Kroonenberg
(1983): “diagonalize” frontal slices of G (P = Q)
Kiers (1992): “super-diagonalize” G (P = Q = R)
Kiers (1998): SIMPLIMAX

G −→ minimize ssq (m smallest elements)
Murakami et al. (1998)

P = QR − 1
Example: P = 5,Q = 3,R = 2

Ga = [G1|G2] −→


0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 0 1
µ1 0 0 0 µ2 0


also: Ten Berge & Kiers (1999), Ten Berge et al. (2000),
Rocci & Ten Berge (2002)

17 / 24



Symmetric slice arrays

What about symmetric slice arrays?
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Symmetric slice I × I × Kmax arrays

{frontal slices} = basis for the space of symmetric I × I
matrices
simple basis for the same space (Rocci & Ten
Berge(1994))
Example: I = 3 1 0 0

0 0 0
0 0 0

 ,
 0 0 0

0 1 0
0 0 0

 ,
 0 0 0

0 0 0
0 0 1


 0 1 0

1 0 0
0 0 0

 ,
 0 0 1

0 0 0
1 0 0

 ,
 0 0 0

0 0 1
0 1 0


frontal slice mix suffices
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Symmetric slice 3× 3× K arrays

Example: 3× 3× 4 1 0 0 1 0 0 0 1 0 0 0 1
0 α 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 δα 0 0 0 1 0 0

 3× 3× 4

(δ = 1/− 1 in real/complex case)

Conclusion: weight 8 is always possible
(28 out of 36 entries are zero!)
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Symmetric slice 4× 4× K arrays

Example: 4× 4× 8

It can almost surely be simplified into one out of two weight 18
arrays.

One of the targets: ? 0 0 0 0 0 0 0 0 0 0 0 0 ? 0 0
0 ? 0 0 0 ? 0 0 0 ? 0 0 ? 0 0 0
0 0 0 ? 0 0 ? 0 0 0 0 0 0 0 0 0
0 0 ? 0 0 0 0 0 0 0 0 ? 0 0 0 0

∣∣∣∣∣∣∣
0 0 ? 0 0 0 0 ? 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 ? 0 0 0 0 ?
? 0 0 0 0 0 0 0 0 ? 0 0 0 0 0 0
0 0 0 0 ? 0 0 0 0 0 0 0 0 ? 0 0


110 out of 128 entries are zero!

21 / 24



Maximal simplicity

Question: can simpler targets be found for the cases previously
presented?

Answer:
3× 3× K : NO (proved)
4× 4× K : NO(?) (simulation)
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Example of application: typical rank

X: symmetric slice 3× 3× 4 array
Ten Berge et al. (2004)�� ��typical rank (X)= {4,5}
rank=4?, rank=5?
Check if roots of a certain fourth degree polynomial are
real and distinct.

Using 3× 3× 4 simple form we can see that:
rank (X)=4 iif δ = 1 and α > 0 (and rank is 5 otherwise)
a CP decomposition is now straightforward

Example: rank=4

A =
[

1 1 1 1
0 0

√
α −

√
α√

α −
√
α 0 0

]
,C =

[
0 0 0.5 0.5

0.5 0.5 0 0
0 0 0.5

√
α−1 −0.5

√
α−1

0.5
√
α−1 −0.5

√
α−1 0 0

]
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Conclusions. Considerations. Developments

Conclusions
multi-way = generalization of PCA to higher-dimensions
rotation freedom of 3PCA allows for simplification

Considerations
3PCA core arrays are not “randomly sampled from a
continuous distribution”, but do behave as if they were
valid contribution for Matrix Theory: simultaneous
reduction of more than a pair of matrices to sparse forms is
scarce

Developments (simplicity
extend simplicity results to other orders
address issues like: maximal simplicity, typical rank
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