Three-way PCA

Jorge Tendeiro

University of Groningen

25 March 2010 / JOCLAD
(1) Introducing three-way arrays

- Definitions, concepts
(2) Models for three-way arrays
- PCA - a 2D motivation
- Extending PCA to 3D - Candecomp/Parafac
- Extending PCA to 3D - INDSCAL
- Extending PCA to 3D - Tucker3
(3) Simplifying three-way arrays
- Some results available so far
- Symmetric slice arrays
- Maximal simplicity
- Example of application: typical rank

4 Conclusions. Considerations. Developments

Definition

Idea

- three-way arrays: generalize matrix structure to 3D
- loaf-of-bread structure

Examples of three-way data

- different anxiety measures, different circumstances, various subjects
- sales of different products, in different shops, in different weeks
- job requirements for various jobs, according to various job analysts

SLICES of a three-way array

Three-way array

Horizontal slices $\left(\mathrm{X}_{i}\right)$

Lateral slices $\left(X_{j}\right)$

Frontal slices (X_{k})

FIBERS of a three-way array

Three-way array

Horizontal fibers ($\mathrm{x}_{i k}$)

Vertical fibers ($\mathrm{x}_{j k}$)

Depth fibers $\left(\mathbf{x}_{i j}\right)$

Unfolding/matricizing a three-way array

Frontal slices (X_{k})

$(3 \mathrm{D} \longrightarrow 2 \mathrm{D})$
Matricizing \mathbf{X}

Two-way array = data matrix

Scores of subjects (rows) on variables (columns).

Goal

Representation of variables in low-dimension space:

$$
R=\# \text { columns of } \mathbf{A} \text { and } \mathbf{B}<J=\# \text { columns of } \mathbf{X}
$$

So \mathbf{X} is approximated by a matrix with lower rank, ie, \mathbf{X} is approximated by a sum of R rank- 1 matrices:

$$
\mathbf{X} \simeq \mathbf{a}_{1} \mathbf{b}_{1}^{\prime}+\cdots+\mathbf{a}_{R} \mathbf{b}_{R}^{\prime}
$$

CANDECOMP/PARAFAC (CP)

$\underline{\mathbf{X}}: I \times J \times K$ array ($I=$ subjects, $J=$ variables, $K=$ situations)
Goal: find components for subjects, variables and situations.

$$
\mathbf{X}_{k}=\mathbf{A} \mathbf{C}_{k} \mathbf{B}^{\prime}+\mathbf{E}_{k}
$$

- PCA
\square
$\mathbf{C}_{k}=$ diagonal matrix holding k-th row of \mathbf{C}

$$
\mathbf{x}_{k} \simeq c_{k 1} \mathbf{a}_{1} \mathbf{b}_{1}^{\prime}+\cdots+c_{k R} \mathbf{a}_{R} \mathbf{b}_{R}^{\prime}
$$

CANDECOMP/PARAFAC (CP)

Parallel proportional profiles (Cattell 1944)

To simultaneously analyse several matrices together, find a set of common factors (\mathbf{A}, \mathbf{B}) that can be fitted with different weights ($\mathbf{C}_{k}, k=1, \ldots, K$) to many data matrices at the same time.

CANDECOMP/PARAFAC (CP)

Similarities between PCA and CP

- CP decomposes an array as a sum of rank one arrays
- $\operatorname{rank}(\underline{\mathbf{X}})=$ minimum number of rank one arrays for which CP gives perfect fit

Differences between PCA and CP

- only iterative algorithm for CP
- CP is usually unique
- preprocessing three-way data hard

INDSCAL

S: $I \times I \times K$ array with symmetric slices (set of correlation matrices, for example)

INDSCAL is CP with the constraint $\mathbf{A}=\mathbf{B}$:

$$
\mathbf{S}_{k}=\mathbf{A} \mathbf{C}_{k} \mathbf{A}^{\prime}+\mathbf{E}_{k}
$$

Tucker3

$\underline{\mathbf{X}}: I \times J \times K$ array ($I=$ subjects, $J=$ variables, $K=$ situations)
Goal: find components for subjects, variables and situations.

$$
\mathbf{X}_{k}=\mathbf{A}\left(\sum_{r=1}^{R} c_{k r} \mathbf{G}_{r}\right) \mathbf{B}^{\prime}+\mathbf{E}_{k}
$$

Tucker3

Features of Tucker3

- A, B, C can have different number of components
- All components can interact (one per mode)
- Tucker3 decomposes $\underline{\mathbf{X}}$ as a sum of rank-1 arrays (built from $\mathbf{A}, \mathbf{B}, \mathbf{C})$, weighted by the entries in core array $\underline{\mathbf{G}}$

Tucker3 - freedom of rotation

PCA's freedom of rotation (motivation)

S nonsingular

$$
\begin{aligned}
\tilde{\mathbf{X}} & =\mathbf{A} \mathbf{B}^{\prime} \\
& =(\mathbf{A S})\left(\mathbf{S}^{-1} \mathbf{B}^{\prime}\right)
\end{aligned}
$$

It is possible to "shuffle"(=invertible linear combination) the columns of \mathbf{A} and \mathbf{B} such that $\mathbf{A B}^{\prime}$ remains equal.

Tucker3's freedom of rotation

It is possible to "shuffle" the columns of $\mathbf{A}, \mathbf{B}, \mathbf{C}$ and preserve the fit, letting $\underline{\mathbf{G}}$ absorb the compensations (and vice-versa).

Simplifying three-way arrays

Goal

Given array $\underline{\mathbf{X}}$, find nonsingular linear combinations of the slices of $\underline{\mathbf{X}}$ (in any direction possible) such that most of the entries of the array become zero.

Why?

Statistical reasons:

- Tucker3: simpler core $\underline{\mathbf{G}} \Longrightarrow$ usually simpler interpretation
- constrained Tucker3: distinguish between tautology and non-trivial model
Mathematical reasons:
- typical rank, maximal rank, maximal simplicity

Some results available so far

- Cohen (1974, 1975), MacCallum (1976), Kroonenberg (1983): "diagonalize" frontal slices of $\underline{\mathbf{G}}(P=Q)$
- Kiers (1992): "super-diagonalize" $\underline{\mathbf{G}}(P=Q=R)$
- Kiers (1998): SIMPLIMAX
$\underline{\mathbf{G}} \longrightarrow$ minimize ssq (m smallest elements)
- Murakami et al. (1998)

$$
P=Q R-1
$$

Example: $P=5, Q=3, R=2$

$$
\mathbf{G}_{a}=\left[\mathbf{G}_{1} \mid \mathbf{G}_{2}\right] \longrightarrow\left[\begin{array}{ccc|ccc}
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 \\
\mu_{1} & 0 & 0 & 0 & \mu_{2} & 0
\end{array}\right]
$$

- also: Ten Berge \& Kiers (1999), Ten Berge et al. (2000), Rocci \& Ten Berge (2002)

Symmetric slice arrays

What about symmetric slice arrays?

Symmetric slice $I \times I \times K_{\max }$ arrays

- \{frontal slices\} = basis for the space of symmetric $I \times I$ matrices
- simple basis for the same space (Rocci \& Ten Berge(1994))
Example: $I=3$

$$
\begin{aligned}
& {\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right],\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right],\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 1
\end{array}\right]} \\
& {\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right],\left[\begin{array}{lll}
0 & 0 & 1 \\
0 & 0 & 0 \\
1 & 0 & 0
\end{array}\right],\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right]}
\end{aligned}
$$

- frontal slice mix suffices

Symmetric slice $3 \times 3 \times K$ arrays

Example: $3 \times 3 \times 4$

$$
\left[\begin{array}{ccc|ccc|ccc|ccc}
1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\
0 & \alpha & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & \delta \alpha & 0 & 0 & 0 & 1 & 0 & 0
\end{array}\right]
$$

($\delta=1 /-1$ in real/complex case)
Conclusion: weight 8 is always possible (28 out of 36 entries are zero!)

Symmetric slice $4 \times 4 \times K$ arrays

Example: $4 \times 4 \times 8$
It can almost surely be simplified into one out of two weight 18 arrays.

One of the targets:

$$
\left[\begin{array}{cccc|cccc|cccc|cccc|c}
\star & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \star & 0 & 0 & \\
0 & \star & 0 & 0 & 0 & \star & 0 & 0 & 0 & \star & 0 & 0 & \star & 0 & 0 & 0 \\
0 & 0 & 0 & \star & 0 & 0 & \star & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \\
0 & 0 & \star & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \star & 0 & 0 & 0 & 0 & \\
\\
& 0 & 0 & \star & 0 & 0 & 0 & 0 & \star & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
& 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \star & 0 & 0 & 0 & 0 & \star \\
& \star & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \star & 0 & 0 & 0 & 0 & 0 & 0 \\
& 0 & 0 & 0 & 0 & \star & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \star & 0 & 0
\end{array}\right], ~=
$$

110 out of 128 entries are zero!

Maximal simplicity

Question: can simpler targets be found for the cases previously presented?

Answer:

- $3 \times 3 \times K$: NO (proved)
- $4 \times 4 \times K: \mathrm{NO}(?)$ (simulation)

Example of application: typical rank

- X: symmetric slice $3 \times 3 \times 4$ array
- Ten Berge et al. (2004) typical rank $(\underline{\mathbf{X}})=\{4,5\}$
- rank=4?, rank=5?

Check if roots of a certain fourth degree polynomial are real and distinct.

Using $\quad 3 \times 3 \times 4$ simple form we can see that:

- rank $(\underline{\mathbf{X}})=4$ iif $\delta=1$ and $\alpha>0$ (and rank is 5 otherwise)
- a CP decomposition is now straightforward

Example: rank=4
$\mathbf{A}=\left[\begin{array}{cccc}1 & 1 & 1 & 1 \\ 0 & 0 & \sqrt{\alpha} & -\sqrt{\alpha} \\ \sqrt{\alpha} & -\sqrt{\alpha} & 0 & 0\end{array}\right], \mathbf{C}=\left[\begin{array}{cccc}0 & 0 & 0.5 & 0.5 \\ 0.5 & 0.5 & 0 & 0 \\ 0 & 0 & 0.5 \sqrt{\alpha^{-1}} & -0.5 \sqrt{\alpha^{-1}} \\ 0.5 \sqrt{\alpha^{-1}} & -0.5 \sqrt{\alpha^{-1}} & 0 & 0\end{array}\right]$

Conclusions. Considerations. Developments

Conclusions

- multi-way = generalization of PCA to higher-dimensions
- rotation freedom of 3PCA allows for simplification

Considerations

- 3PCA core arrays are not "randomly sampled from a continuous distribution", but do behave as if they were
- valid contribution for Matrix Theory: simultaneous reduction of more than a pair of matrices to sparse forms is scarce

Developments (simplicity

- extend simplicity results to other orders
- address issues like: maximal simplicity, typical rank

