Simplicity transformations for three-way arrays with symmetric slices

Jorge Tendeiro

University of Groningen

16 December 2010 / IOPS Conference

Outline

- 2 Methods to analyze three-way arrays
- Simplifying three-way arrays
 - Maximal simplicity
- 5 Example of application: typical rank
- 6 Conclusions. Considerations. Developments

2 Methods to analyze three-way arrays

3 Simplifying three-way arrays

4 Maximal simplicity

5 Example of application: typical rank

Conclusions. Considerations. Developments

Jorge Tendeiro (University of Groningen) Three-way arrays with symmetric s

Definition

Idea

- three-way arrays: generalize matrix structure to 3D
- loaf-of-bread structure

Examples of three-way data

- different anxiety measures, different circumstances, various subjects
- sales of different products, in different shops, in different weeks
- job requirements for various jobs, according to various job analysts

SLICES of a three-way array

Lateral slices x_i j=1 · · · j=i

FIBERS of a three-way array

Three-way array

Horizontal fibers (\mathbf{x}_{ik})

Unfolding a three-way array

2 Methods to analyze three-way arrays

3 Simplifying three-way arrays

4 Maximal simplicity

5 Example of application: typical rank

Conclusions. Considerations. Developments

Jorge Tendeiro (University of Groningen) Three-way arrays with symmetric slices

PCA

X : matrix of order $I \times J$ (*I*=subjects, *J*=variables) <u>Goal</u>: representation of variables in low-space dimension.

$$x_{ij} = \sum_{r=1}^{R} a_{ir} b_{jr} + e_{ij}$$

►

- x_{ij} = score of subject *i* on variable *j*
- a_{ir} = score of subject i on component r
- b_{jr} = loading of variable j on component r
- e_{ij} = residual error

PCA – other formulation

$$\mathbf{X} = \sum_{r=1}^{R} (\mathbf{a}_r \circ \mathbf{b}_r) + \mathbf{E}$$

- $\mathbf{a}_r \circ \mathbf{b}_r$: rank-1 matrix
- PCA decomposes X as a sum of rank-1 matrices
- rank(X): minimum R such that $\mathbf{E} \equiv \mathbf{0}$

CANDECOMP/PARAFAC (CP)

 \underline{X} : array of order $I \times J \times K$ (*I*=subjects, *J*=variables, *K*=situations) <u>Goal</u>: find components for subjects, variables and situations.

$$x_{ijk} = \sum_{r=1}^{R} a_{ir} b_{jr} c_{kr} + e_{ijk},$$

- x_{iik} = score of subject i on variable j on situation k
- a_{ir} = score of subject i on component r
- b_{jr} = loading of variable j on component r
- *c_{kr}* = loading of situation *k* on component *r*
- e_{ijk} = residual error

CP – other formulation

$$\underline{\mathbf{X}} = \sum_{r=1}^{R} (\mathbf{a}_r \circ \mathbf{b}_r \circ \mathbf{c}_r) + \underline{\mathbf{E}}$$

- $\mathbf{a}_r \circ \mathbf{b}_r \circ \mathbf{c}_r$: rank-1 array
- CP decomposes X as a sum of rank-1 arrays
- rank($\underline{\mathbf{X}}$): minimum *R* such that $\underline{\mathbf{E}} \equiv \mathbf{0}$

Tucker3

 \underline{X} : array of order $I \times J \times K$ (*I*=subjects, *J*=variables, *K*=situations) <u>Goal</u>: find components for subjects, variables and situations.

$$egin{aligned} & x_{ijk} = \sum_{p=1}^{P} \sum_{q=1}^{Q} \sum_{r=1}^{R} g_{pqr} \left(a_{ip} b_{jq} c_{kr}
ight) + e_{ijk}, \end{aligned}$$

- *a_{ip}* = score of subject *i* on component *p*
- *b_{jq}* = loading of variable *j* on component *q*
- c_{kr} = loading of situation k on component r
- g_{pqr} = weight (core array **<u>G</u>**, order $P \times Q \times R$)
- e_{ijk} = residual error

Tucker3 – other formulations

$$\mathbf{X} = \sum_{p=1}^{P} \sum_{q=1}^{Q} \sum_{r=1}^{R} g_{pqr} \left(\mathbf{a}_{p} \circ \mathbf{b}_{q} \circ \mathbf{c}_{r}
ight) + \mathbf{E}$$

- $\mathbf{a}_r \circ \mathbf{b}_r \circ \mathbf{c}_r$: rank-1 array
- Tucker3 decomposes X as a sum of rank-1 arrays
- $rank(\underline{X}) \leqslant PQR$ (usually $rank(\underline{X}) \ll PQR$)

Formula using unfolded notation

$$\underbrace{\mathbf{X}}_{\mathbf{G}} (I \times J \times K) \longrightarrow \mathbf{X} = [\mathbf{X}_1 | \mathbf{X}_2 | \cdots | \mathbf{X}_K] \text{ (fitted part} \\ \underline{\mathbf{G}} (P \times Q \times R) \longrightarrow \mathbf{G} = [\mathbf{G}_1 | \mathbf{G}_2 | \cdots | \mathbf{G}_R]$$

$$\mathbf{X} = \mathbf{AG}(\mathbf{C}' \otimes \mathbf{B}')$$

Tucker3 – seeing CP as particular situation

 Tucker3 reduces to Candecomp/Parafac when the core array has a super-diagonal form:

$$\underline{\mathbf{G}} = \begin{bmatrix} 1 & 0 & \cdots & 0 & 0 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 & 0 & 0 & \cdots & 0 \end{bmatrix} \cdots \begin{bmatrix} 0 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{bmatrix}$$

 only interactions between corresponding components are accounted for in CP

Tucker3 – freedom of rotation

PCA's freedom of rotation (motivation)

S nonsingular

$$\begin{split} \mathbf{X} &= \mathbf{A}\mathbf{B}' \\ &= (\mathbf{A}\mathbf{S})(\mathbf{S}^{-1}\mathbf{B}') \end{split}$$

Tucker3's freedom of rotation

S, T, U nonsingular

$$\begin{array}{rccc} \mathbf{A} & \longrightarrow & \mathbf{A}(\mathbf{S}')^{-1} \\ \mathbf{B} & \longrightarrow & \mathbf{B}(\mathbf{T}')^{-1} \\ \mathbf{C} & \longrightarrow & \mathbf{C}(\mathbf{U}')^{-1} \\ \mathbf{G}_a = [\mathbf{G}_1|\cdots|\mathbf{G}_R] & \longrightarrow & \mathbf{S}'\mathbf{G}_a(\mathbf{U}\otimes\mathbf{T}) \end{array}$$

(Tucker transformation)

Tucker3 – illustration (Kiers & Van Mechelen (2001)) **X**=data set of...

- 6 individuals: Anne, Bert, Claus, Dolly, Edna, Frances
- 5 response variables: emotional, sensitive, caring, thorough, accurate
- 4 different situations: doing an exam, giving a speech, family picnic, meeting a new date

Component matrix A				
Individual	Femininity	Masculinity		
Anne	1.0	0.0		
Bert	0.0	1.0		
Claus	0.0	1.0		
Dolly	1.0	0.0		
Edna	0.5	0.5		
Frances	1.0	0.0		

Tucker3 – illustration (Kiers & Van Mechelen (2001))

Component matrix B				
Response	Emotionality	Conscientiousness		
Emotional	1.0	0.0		
Sensitive	1.0	0.0		
Caring	0.6	0.4		
Thorough	0.0	1.0		
Accurate	0.0	1.0		

Component matrix C				
Situation	Performance situations	Social situations		
Doing an exam	1.0	0.0		
Giving a speech	0.8	0.2		
Family picnic	0.0	1.0		
Meeting a new date	0.3	1.2		

Tucker3 – illustration (Kiers & Van Mechelen (2001))

Core array <u>G</u>					
	Performance situations				
	Emotionality	Conscientiousness			
Femininity	0.0	3.0			
Masculinity	0.0	2.0			
	Social situations				
	Emotionality	Conscientiousness			
Femininity	3.0	0.0			
Masculinity	1.0	1.0			

Methods to analyze three-way arrays

Simplifying three-way arrays

4 Maximal simplicity

5 Example of application: typical rank

Conclusions. Considerations. Developments

Jorge Tendeiro (University of Groningen) Three-way arrays with symmetr

Goal

Find suitable linear combinations of frontal (and/or lateral and/or horizontal) slices that allow transforming \underline{X} into an "equivalent" array with many zero entries.

```
Formally: S, T, U=?: H = SX(U ⊗ T)
many zero entries = few nonzero entries
weight of <u>H</u> = # nonzero entries of <u>H</u>
```

Goal

Find suitable linear combinations of frontal (and/or lateral and/or horizontal) slices that allow transforming \underline{X} into an "equivalent" array with many zero entries.

Why?

Facilitate interpretation of 3PCA decompositions

Example: rotate **<u>G</u>** so that several entries become zero

less interactions of components to account for during interpretion of 3PCA

Constrained 3PCA: distinguish between tautologies and non-trivial models

Mathematical applications: typical rank, maximal rank

Why?

Facilitate interpretation of 3PCA decompositions

Example: rotate **<u>G</u>** so that several entries become zero

less interactions of components to account for during interpretion of 3PCA

Constrained 3PCA: distinguish between tautologies and non-trivial models

Mathematical applications: typical rank, maximal rank

Why?

Facilitate interpretation of 3PCA decompositions

Example: rotate **<u>G</u>** so that several entries become zero

less interactions of components to account for during interpretion of 3PCA

Constrained 3PCA: distinguish between tautologies and non-trivial models

Mathematical applications: typical rank, maximal rank

Some examples (I-III)

- Cohen (1974, 1975), MacCallum (1976), Kroonenberg (1983): "diagonalize" frontal slices of $\underline{\mathbf{G}} (P = Q)$
- Kiers (1992): "super-diagonalize" $\underline{\mathbf{G}}$ (P = Q = R)
- Kiers (1998): SIMPLIMAX

 $\underline{\mathbf{G}} \longrightarrow \text{minimize ssq} (m \text{ smallest elements})$

<u>X</u> of order $P \times Q \times R$, P = QR

Example: \underline{X} of order $6 \times 3 \times 2$

$$\underline{\mathbf{X}} \longrightarrow \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix} = \mathbf{X}^{-1} \mathbf{X} (\mathbf{I}_2 \otimes \mathbf{I}_3)$$

Some examples (II-III)

<u>X</u> of order $P \times Q \times R$, P = QR - 1

Murakami, Ten Berge & Kiers (1998) Example: \underline{X} of order $5 \times 3 \times 2$

$$\underline{\mathbf{X}} \longrightarrow \begin{bmatrix} 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ \mu_1 & 0 & 0 & 0 & \mu_2 & 0 \end{bmatrix}$$

Some examples (III-III)

X of order $P \times Q \times 2$ P > Q: Ten Berge & Kiers (1999) $\underline{\mathbf{X}} \longrightarrow \left| \frac{\mathbf{I}_Q}{\mathbf{0}} \right| \frac{\mathbf{0}}{\mathbf{I}_Q} \right|$ P = Q: Rocci & Ten Berge (2002) Example: $\mathbf{X} = [\mathbf{X}_1 | \mathbf{X}_2]$ of order $3 \times 3 \times 2$ $\begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & \mu_1 & 0 & 0 & \mu_2 \end{bmatrix} \text{ or } \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & \mu \\ 0 & 0 & 1 & 0 & -\mu & 0 \end{bmatrix}$ $(\mathbf{X}_1^{-1}\mathbf{X}_2 \text{ has real eigs.}) \qquad (\mathbf{X}_1^{-1}\mathbf{X}_2 \text{ has complex eigs.})$

Our goal: simplifying arrays with SYMMETRIC slices

Example: set of similarity matrices over time

Symmetric-slice arrays

• $\underline{\mathbf{X}} = [\mathbf{X}_1 | \cdots | \mathbf{X}_K]$: order $I \times I \times K$

- ► <u>assume</u>: <u>X</u> is randomly sampled from a continuous distribution with symmetry constraint (X_k symmetric, ∀k)
- slices X_k linearly independent

• number of slices:
$$K = 1, 2, \dots, \underbrace{\frac{l(l+1)}{2}}_{K_{max}}$$

- symmetry-preserving transformation of <u>X</u>
 - ► $S_{I \times I}$, $U_{K \times K}$ nonsingular

$$\mathbf{H}_{l} = \mathbf{S}'\left(\sum_{k} u_{kl}\mathbf{X}_{k}\right)\mathbf{S}, \quad l = 1, 2, \dots, K$$

► <u>GOAL</u>: introduce as many zeros in <u>H</u> as possible

Orthogonal Complement Method: "symmetric" version

Symmetric slice $I \times I \times K_{max}$ arrays

- {frontal slices} = basis for the space of symmetric $I \times I$ matrices
- simple basis for the same space (Rocci & Ten Berge(1994)): (notation: e_i = column *i* of l_i)

$$\begin{aligned} \mathbf{e}_i \mathbf{e}'_i, \quad i = 1, \dots, I \\ \mathbf{e}_i \mathbf{e}'_j + \mathbf{e}_j \mathbf{e}'_i, \quad 1 \leqslant i < j \leqslant I \end{aligned}$$

Example: *I* = 3

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
$$\begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$

• frontal slice mix suffices

Symmetric slice $2 \times 2 \times K$ arrays

- K_{max} = 3, so K = 1, 2, 3
- $2 \times 2 \times 3$: done (K_{max} situation)
- 2 × 2 × 1: use EVD

$$\underline{\mathbf{X}} \longrightarrow \begin{bmatrix} \mathbf{1} & \mathbf{0} \\ \mathbf{0} & \alpha \end{bmatrix}; \text{ if } \alpha < \mathbf{0} : \begin{bmatrix} \mathbf{0} & \mathbf{1} \\ \mathbf{1} & \mathbf{0} \end{bmatrix}$$

• $2 \times 2 \times 2 = orthogonal complement of <math>2 \times 2 \times 1$

$$\underline{\mathbf{X}} \longrightarrow \begin{bmatrix} \alpha & \mathbf{0} & \mathbf{0} & \mathbf{1} \\ \mathbf{0} & -\mathbf{1} & \mathbf{1} & \mathbf{0} \end{bmatrix}; \text{ if } \alpha < \mathbf{0}: \begin{bmatrix} \mathbf{1} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{1} \end{bmatrix}$$

Conclusion for $2 \times 2 \times 2$:

- weight 4 is always possible
- if $\underline{\mathbf{X}}^c$ has eigenvalues of both signs then weight 2 is possible

Symmetric slice $3 \times 3 \times K$ arrays

- $3 \times 3 \times 6$: done (K_{max} situation)
- $3 \times 3 \times 1$: use EVD

$$\underline{\mathbf{X}} \longrightarrow \begin{bmatrix} d_1 & 0 & 0 \\ 0 & d_2 & 0 \\ 0 & 0 & d_3 \end{bmatrix}; \text{ if } d_2 d_3 < 0: \begin{bmatrix} d_1 & 0 & 0 \\ 0 & 0 & 2d_2 \\ 0 & 2d_2 & 0 \end{bmatrix}$$

• $3 \times 3 \times 5$ = orthogonal complement of $3 \times 3 \times 1$

$$\begin{split} \underline{\mathbf{X}} \longrightarrow \begin{bmatrix} 1 & 0 & 0 & | & 1 & 0 & 0 & | & 0 & 1 & 0 & | & 0 & 0 & 1 & | & 0 & 0 & 0 & 0 \\ 0 & \alpha & 0 & | & 0 & 0 & 0 & | & 1 & 0 & 0 & | & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & | & 0 & 0 & \beta & | & 0 & 0 & 0 & | & 1 & 0 & 0 & 0 & 1 & 0 \\ \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 & | & 0 & 0 & 0 & | & 0 & 1 & 0 & | & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & | & 0 & 0 & 0 & | & 1 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & | & 0 & 0 & 1 & | & 0 & 0 & 0 & 0 & 0 & 1 & 0 \end{bmatrix}$$

Conclusion for $3 \times 3 \times 5$:

- weight 10 is always possible
- if <u>X</u>^c has eigenvalues of both signs then weight 9 is possible

Symmetric slice $3 \times 3 \times K$ arrays

- $3 \times 3 \times 2$: see EVD($X_1^{-1}X_2$)
 - real eigenvalues

$$\underline{\mathbf{X}} \longrightarrow \begin{bmatrix} 0 & 0 & 0 & | & \beta & 0 & 0 \\ 0 & \alpha & 0 & | & 0 & 0 & 0 \\ 0 & 0 & 1 & | & 0 & 0 & 1 \end{bmatrix}; \text{ also:} \begin{bmatrix} -\alpha & 0 & 0 & | & 0 & 0 & 0 \\ 0 & 1 & 0 & | & 0 & 0 & 1 \\ 0 & 0 & 1 & | & 0 & 1 & 0 \end{bmatrix}$$

complex eigenvalues

$$\underline{\mathbf{X}} \longrightarrow \left[\begin{array}{ccccc} -\alpha & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 1 \\ 0 & 0 & -1 & 0 & 1 & 0 \end{array} \right]$$

Conclusion for $3 \times 3 \times 2$:

- weight 5 is always possible
- if $\mathbf{X}_1^{-1}\mathbf{X}_2$ has real eigenvalues then weight 4 is possible

Symmetric slice $3 \times 3 \times K$ arrays

• $3 \times 3 \times 4$ = orthogonal complement of $3 \times 3 \times 2$

($\delta = 1/-1$ in real/complex case)

Conclusion for $3 \times 3 \times 4$:

- weight 8 is always possible
- 3 × 3 × 3: still open!
 - ▶ when a 3 × 3 × 3 array has an orthogonal complement, it is also 3 × 3 × 3...
 - simulation: a weight 9 pattern seems to be possible almost 90% of the times
 - to be continued (...)

Symmetric slice $4 \times 4 \times K$ arrays

•
$$K_{\text{max}} = 10$$
, so $K = 1, 2, \cdots, 8, 9, 10$

- $4 \times 4 \times 10$: done (K_{max} situation)
- 4 × 4 × 1: use EVD

• $4 \times 4 \times 9$ = orthogonal complement of $4 \times 4 \times 1$

- weight 18 is always possible
- depending on the signs of eigs(X^c) we can have weight 17 or 16

Symmetric slice $4 \times 4 \times K$ arrays

• $4 \times 4 \times 2$: see EVD($X_1^{-1}X_2$)

real eigenvalues: weight 6

 $\left[\begin{array}{cccccccccc} 0 & 0 & 0 & 0 & \gamma & 0 & 0 & 0 \\ 0 & \alpha & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & \beta & 0 & 0 & 0 & \delta & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \end{array} \right]$

one pair of complex eigenvalues: weight 7

Γα	0	0	0	γ	0	0	0 -
0	β	0	0	0	0	0	0
0	0	1	0	0	0	0	1
LΟ	0	0	-1	0	0	1	0

two pairs of complex eigenvalues: weight 8

$$\left[\begin{array}{cccccccccc} 1 & 0 & 0 & 0 & 0 & \gamma & 0 & 0 \\ 0 & -1 & 0 & 0 & \gamma & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & -1 & 0 & 0 & 1 & 0 \end{array} \right]$$

Symmetric slice $4 \times 4 \times K$ arrays

• $4 \times 4 \times 8$ = orthogonal complement of $4 \times 4 \times 2$

any symmetric slice 4 × 4 × 8 array can almost surely be simplified into one out of two weight 18 arrays

Example: one of the targets

Methods to analyze three-way arrays

3 Simplifying three-way arrays

4 Maximal simplicity

5 Example of application: typical rank

Conclusions. Considerations. Developments

Jorge Tendeiro (University of Groningen) Three-way arrays with symmetry

Maximal simplicity

<u>Question</u>: can simpler targets be found for the cases previously presented?

Answer:

• 3 × 3 × *K* for *K* = 1, 2, 4, 5, 6: NO (proved)

• $4 \times 4 \times K$ for K = 8, 9: NO(?) (simulation)

<u>Question</u>: can simpler targets be found for the cases previously presented?

Answer:

- $3 \times 3 \times K$ for K = 1, 2, 4, 5, 6: NO (proved)
- $4 \times 4 \times K$ for K = 8, 9: NO(?) (simulation)

Jorge Tendeiro (University of Groningen)

Example of application: typical rank

- $\underline{\mathbf{X}}$: symmetric slice $3 \times 3 \times 4$ array
- Ten Berge et al. (2004)

typical rank (
$$\underline{X}$$
)= $\{4, 5\}$

rank=4?, rank=5?

Check if roots of a certain fourth degree polynomial are real and distinct.

Using • 3 × 3 × 4 simple form), and applying the same reasoning as in Ten Berge et al. (2004), we conclude that:

- rank (X)=4 iif $\delta = 1$ and $\alpha > 0$ (and rank is 5 otherwise)
- a CP decomposition is now straightforward

Example: rank=4

$$\mathbf{A} = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 0 & \sqrt{\alpha} & -\sqrt{\alpha} \\ \sqrt{\alpha} & -\sqrt{\alpha} & 0 & 0 \end{bmatrix}, \mathbf{C} = \begin{bmatrix} 0 & 0 & 0.5 & 0.5 \\ 0.5 & 0.5 & 0 & 0 \\ 0 & 0 & 0.5\sqrt{\alpha^{-1}} & -0.5\sqrt{\alpha^{-1}} \\ 0.5\sqrt{\alpha^{-1}} & -0.5\sqrt{\alpha^{-1}} & 0 & 0 \end{bmatrix}$$

Example of application: typical rank

- \underline{X} : symmetric slice $3 \times 3 \times 4$ array
- Ten Berge et al. (2004)

typical rank (\underline{X})= {4,5}

rank=4?, rank=5?

Check if roots of a certain fourth degree polynomial are real and distinct.

Using $3 \times 3 \times 4$ simple form, and applying the same reasoning as in Ten Berge et al. (2004), we conclude that:

- rank (X)=4 iif $\delta = 1$ and $\alpha > 0$ (and rank is 5 otherwise)
- a CP decomposition is now straightforward

Example: rank=4

$$\mathbf{A} = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 0 & \sqrt{\alpha} & -\sqrt{\alpha} \\ \sqrt{\alpha} & -\sqrt{\alpha} & 0 & 0 \end{bmatrix}, \mathbf{C} = \begin{bmatrix} 0 & 0 & 0.5 & 0.5 \\ 0.5 & 0.5 & 0 & 0 \\ 0 & 0 & 0 & 0.5\sqrt{\alpha^{-1}} & -0.5\sqrt{\alpha^{-1}} \\ 0.5\sqrt{\alpha^{-1}} & -0.5\sqrt{\alpha^{-1}} & 0 & 0 \end{bmatrix}$$

Methods to analyze three-way arrays

3 Simplifying three-way arrays

4 Maximal simplicity

5 Example of application: typical rank

6 Conclusions. Considerations. Developments

Jorge Tendeiro (University of Groningen) Three-way arrays with symmetric slices

Conclusions. Considerations. Developments

Conclusions

- simplification achieved for some types of arrays with symmetric frontal slices; closed form rotation matrices available
- maximal simplicity achieved (mathematically proved or empirically verified via SIMPLIMAX)
- typical rank considerations come as nice follow-ups

Considerations

- 3PCA core arrays are not "randomly sampled from a continuous distribution", but do behave as if they were
- valid contribution for Matrix Theory: simultaneous reduction of more than a pair of matrices to sparse forms is scarce

Developments

- extend results to other orders
- address issues like: maximal simplicity, typical rank

Conclusions. Considerations. Developments

Conclusions

- simplification achieved for some types of arrays with symmetric frontal slices; closed form rotation matrices available
- maximal simplicity achieved (mathematically proved or empirically verified via SIMPLIMAX)
- typical rank considerations come as nice follow-ups

Considerations

- 3PCA core arrays are not "randomly sampled from a continuous distribution", but do behave as if they were
- valid contribution for Matrix Theory: simultaneous reduction of more than a pair of matrices to sparse forms is scarce

Developments

- extend results to other orders
- address issues like: maximal simplicity, typical rank

Conclusions. Considerations. Developments

Conclusions

- simplification achieved for some types of arrays with symmetric frontal slices; closed form rotation matrices available
- maximal simplicity achieved (mathematically proved or empirically verified via SIMPLIMAX)
- typical rank considerations come as nice follow-ups

Considerations

- 3PCA core arrays are not "randomly sampled from a continuous distribution", but do behave as if they were
- valid contribution for Matrix Theory: simultaneous reduction of more than a pair of matrices to sparse forms is scarce

Developments

- extend results to other orders
- address issues like: maximal simplicity, typical rank