
First and second order derivatives for
CP and INDSCAL

Jorge Tendeiro

IOPS Summer Conference

11 June 2010

1 / 31

Outline

1 CP, INDSCAL

2 Motivation: how to catch flies?

3 Some optimization background (back to High School!,
and beyond)

4 The equivalence problem (from motivation to
application)

2 / 31

1 CP, INDSCAL

2 Motivation: how to catch flies?

3 Some optimization background (back to High School!,
and beyond)

4 The equivalence problem (from motivation to
application)

3 / 31

PCA

Two-way array = data matrix
Scores of subjects (rows) on variables (columns).

XI subjects

J variables

= A

B'

+ EAB'

scores
matrix

loadings
matrix

residuals
matrix

�� ��X = AB′ + E . . .

4 / 31

PCA: goal

Goal
Representation of variables in low-dimension space:�� ��R = # columns of A and B < J = # columns of X

X : I × J matrix of rank J; AB' : I × J matrix of rank R

So X is approximated by a sum of R rank-1 matrices:�� ��X ' a1b′1 + · · ·+ aRb′R . . .

5 / 31

Three-way arrays

Three-way arrays
generalize matrix structure to 3D
formal concept
easy to generalize to n-way

6 / 31

CANDECOMP/PARAFAC (CP)

X: I × J × K array (I=subjects, J=variables, K =situations)
Number of components: R

Model

Xk = ACkB′ + Ek PCA . . .

Xk ' ck1a1b′1 + · · ·+ ckRaRb′R PCA

A (I × R): “subjects” matrix
B (J × R): “variables” matrix
C (K × R): “situations” matrix
Ck (R × R): Diag(ck ·)

Minimize loss function:

fCP(A,B,C) =
K∑

k=1

‖Xk − ACkB′‖2
7 / 31

CANDECOMP/PARAFAC (CP)

Parallel proportional profiles (Cattell 1944)
To simultaneously analyse several matrices together, find a set
of common factors (A, B) that can be fitted with different
weights (Ck , k = 1, . . . ,K) to many data matrices at the same
time.

8 / 31

CANDECOMP/PARAFAC (CP)

Similarities between PCA and CP

CP decomposes an array as a sum of rank one arrays

rank(X)=minimum number of rank one arrays for which CP
gives perfect fit

Differences between PCA and CP

only iterative algorithm for CP

CP is usually unique

preprocessing three-way data can be hard

9 / 31

INDSCAL

S: I × I × K array with symmetric slices
(set of correlation matrices, for example)

Model

Sk = ACkA′ + Ek . . .

INDSCAL is CP with the constraint A = B

Minimize loss function:

fIND(A,C) =
K∑

k=1

‖Sk − ACkA′‖2

10 / 31

1 CP, INDSCAL

2 Motivation: how to catch flies?

3 Some optimization background (back to High School!,
and beyond)

4 The equivalence problem (from motivation to
application)

11 / 31

KHL data

Kruskal, Harshman, Lundy (1983, 1985):

X =

[
1 0 0 1
0 −1 1 0

]

Random starts of CP with r = 2 components invariably give
f = 2.

It must be the global minimum.

12 / 31

KHL data

No!

Ten Berge, Kiers, De Leeuw (1988)
inf(f)=1

It must be LOCAL minima.

13 / 31

KHL data

No!

What we found
All solutions with f = 2 are NOT minima (not even local!).

�� ��How can you reach such a conclusion?

14 / 31

1 CP, INDSCAL

2 Motivation: how to catch flies?

3 Some optimization background (back to High School!,
and beyond)

4 The equivalence problem (from motivation to
application)

15 / 31

Some optimization background

Goal
Given a scalar function f : Rn −→ R, how to find extremes
(minima, maxima)?

Three types of points to consider:

1 points in the border of the domain of f ;
Example: f (x) = x3, x between −1 and 1

2 points where f is not twice continuously differentiable;
Example: f (x) = |x |, for x = 0

3 points where f is twice continuously differentiablex�� ��our goal

16 / 31

How to optimize f : Rn −→ R

Step 1 Compute partial derivatives = 1st order derivatives for
each variable, while the others are “constant”.
Find stationary points (SPs) by solving the system

· · ·
fi(x1, . . . , xn) = 0
· · ·

, (i = 1, . . . ,n)

Step 2 Analyze 2nd order derivatives = eigenvalues of the
Hessian matrix:

Hess =

 f11 · · · f1n
...

. . .
...

fn1 · · · fnn



17 / 31

How to optimize f : Rn −→ R

Decision rule:

Hess is positive definite =⇒ SP is minimum

Hess is negative definite =⇒ SP is maximum

Hess is indefinite =⇒ SP is saddle point

18 / 31

Constrained optimization

Method of Lagrange multipliers
Useful to find maxima/minima of a function subject to
constraints

Unconstrained. Constrained to red points.
No minimum, no maximum. Minimum, Maximum.

19 / 31

1 CP, INDSCAL

2 Motivation: how to catch flies?

3 Some optimization background (back to High School!,
and beyond)

4 The equivalence problem (from motivation to
application)

20 / 31

The equivalence problem

S: I × I × K array with I × I symmetric frontal slices

Carroll and Chang (1970) suggested to use CP . . .

to fit the INDSCAL . . . model:

Sk = ACkB′ + Ek ,

and then “hope” that A is columnwise proportional to B
(A and B equivalent).

A and B seem equivalent in practical applications.
However, contrived counterexamples do exist.

21 / 31

The equivalence problem

Result: A 6= B is possible at global minima if slices are
indefinite (Ten Berge and Kiers, 1991).

Example:

S =

[
1 0 0 0 0 2
0 −1 0 0 −2 0
0 0 1 2 0 0

]

A∗ =

[√
1/3

√
0.5

−
√

1/3 0√
1/3 −

√
0.5

]
,B∗ =

[√
1/3

√
0.5√

1/3 0√
1/3 −

√
0.5

]
,C∗ =

[
2 2
0 −2

]
.

This solution minimizes CP’s loss function:

fCP(A,B,C) = ‖S1 − AC1B′‖2 + ‖S2 − AC2B′‖2 > 5

and
fCP(A∗,B∗,C

∗) ≡ 5

22 / 31

The equivalence problem: R = 1

Result: A 6= B is only possible at non-optimal points if slices are
non-negative definite (Ten Berge and Kiers, 1991).

Example:

S =

[
3 1 0 3 −1 0
1 3 0 −1 3 0
0 0 0 0 0 1

]

A∗ =

[
1
0
0

]
,B∗ =

[
0
1
0

]
,C∗ =

[
1
−1

]
.

This solution does not minimize CP’s loss function:

fCP(A,B,C) = ‖S1 − AC1B′‖2 + ‖S2 − AC2B′‖2 > 21

but
fCP(A∗,B∗,C

∗) ≡ 39

These points are, in fact, saddle points (Bennani Dosse and
Ten Berge, 2008).

What happens for R > 1?

23 / 31

Second-order differential structure

Question
What is the general situation when R > 1?

Approach to find an answer
Use simulation (run CP lots of times).

Analyze the first and second-order differential structures of the
loss function of CP

fCP(A,B,C) =
K∑

k=1

‖Xk − ACkB′‖2

But how to do this? Number of variables is too big.

Example: array 2× 2× 2, R = 2 components�� ��fCP(A,B,C) has 12 variables
24 / 31

Second-order differential structure

fCP(A,B,C) =
K∑

k=1

‖Xk − ACkB′‖2 (1)

Procedure
parameter elimination – express C as a function of A
and B (valid at stationary points):

row i of C = (A′A ∗ B′B)−1diag(A′XiB)

simplify target function (1)
use matrix differential calculus: the variables to
differentitate for are matrices A, B
constrain A,B:

columns of unit length (identification constraint)
orthonormal

25 / 31

Second-order differential structure

Apply the same procedure to INDSCAL’s loss function:

fIND(A,C) =
K∑

k=1

‖Xk − ACkA′‖2

What was done – for both fCP and fIND:

Jacobian and Hessian matrices computed in closed form.

second-order sufficient condition is now available to label
SPs.

26 / 31

Applications 1

SVD-approach (Ten Berge, 1988)
INDSCAL model under orthogonality constraints
Claim: the algorithm sometimes stops at local optima

But saddle points are possible (for contrived examples).

27 / 31

Applications 1

Example:

S =

[
3 1 0 3 −1 0
1 3 0 −1 3 0
0 0 0 0 0 1

]
Global minimum (f = 1)

A∗ =

[√
0.5 −

√
0.5√

0.5
√

0.5
0 0

]
,C∗ =

[
4 2
2 4

]
.

Non-optimal SPs: saddle points

A∗ =

[
0 1
1 0
0 0

]
C∗ =

[
3 3
3 3

]
f = 5

A∗ =

[√
0.5 0√
0.5 0

0 1

]
C∗ =

[
4 0
2 1

]
f = 20

A∗ =

[
0 1
0 0
1 0

]
C∗ =

[
0 3
1 3

]
f = 22

28 / 31

Applications 1

What happens for randomly generated data?

Simulation study
150 3× 3× 3 symmetric slice arrays with Gramian slices
SVD-approach with R = 2 components;
10 different initializations per array
the second-order differential structure was analysed in
each case

Results:

saddle points did not occur: there are no indications that
the SVD-approach converges to saddle points for
randomly generated data

local optima occurred for ∼ 8% of the arrays

29 / 31

Applications 2

Equivalence problem
eleven cases considered (R > 1 component, arrays with
symmetric 3× 3 slices)
two types of arrays: Gramian vs non-Gramian slices
100 runs per array

Results
A 6= B did not occur for Gramian slices
A 6= B did occur for indefinite slices only in “sick” cases
(degenerate)
saddle points happen rarely

30 / 31

Conclusions

loss functions of CP and INDSCAL were transformed into
“simpler”(=independent variables) optimization functions

first and second order derivatives were derived

these tools allow to identify saddle points;
if there is a saddle point: rerun the algorithm!

simulation showed that saddle points do not occur
frequently, but they do occur with positive probability

31 / 31

