First and second order derivatives for CP and INDSCAL

Jorge Tendeiro
IOPS Summer Conference

11 June 2010

Outline

(1) CP, INDSCAL
2) Motivation: how to catch flies?

3 Some optimization background (back to High School!, and beyond)
(4) The equivalence problem (from motivation to application)

(1) CP, INDSCAL

2 Motivation: how to catch flies?
(3) Some optimization background (back to High School!, and beyond)

4 The equivalence problem (from motivation to application)

Two-way array = data matrix

Scores of subjects (rows) on variables (columns).

PCA: goal

Goal

Representation of variables in low-dimension space:

$$
R=\# \text { columns of } \mathbf{A} \text { and } \mathbf{B} \quad<\quad J=\# \text { columns of } \mathbf{X}
$$

$\mathbf{X}: I \times J$ matrix of rank $J ; \quad$ AB' $: I \times J$ matrix of rank R
So \mathbf{X} is approximated by a sum of R rank- 1 matrices:

$$
\mathbf{X} \simeq \mathbf{a}_{1} \mathbf{b}_{1}^{\prime}+\cdots+\mathbf{a}_{R} \mathbf{b}_{R}^{\prime}
$$

Three-way arrays

Three-way arrays

- generalize matrix structure to 3D
- formal concept
- easy to generalize to n-way

CANDECOMP/PARAFAC (CP)

$\underline{\mathbf{X}}: I \times J \times K$ array ($I=$ subjects, $J=$ variables, $K=$ situations) Number of components: R

Model

$$
\begin{gather*}
\mathbf{X}_{k}=\mathbf{A} \mathbf{C}_{k} \mathbf{B}^{\prime}+\mathbf{E}_{k} \\
\mathbf{X}_{k} \simeq c_{k 1} \mathbf{a}_{1} \mathbf{b}_{1}^{\prime}+\cdots+c_{k R} \mathbf{a}_{R} \mathbf{b}_{R}^{\prime}
\end{gather*}
$$

A $\quad(I \times R)$: "subjects" matrix
B $(J \times R)$: "variables" matrix
C $(K \times R)$: "situations" matrix
$\mathbf{C}_{k} \quad(R \times R): \quad \operatorname{Diag}\left(\mathbf{c}_{k}.\right)$

Minimize loss function:

$$
f_{\mathrm{CP}}(\mathbf{A}, \mathbf{B}, \mathbf{C})=\sum_{k=1}^{K}\left\|\mathbf{X}_{k}-\mathbf{A} \mathbf{C}_{k} \mathbf{B}^{\prime}\right\|^{2}
$$

CANDECOMP/PARAFAC (CP)

Parallel proportional profiles (Cattell 1944)

To simultaneously analyse several matrices together, find a set of common factors (\mathbf{A}, \mathbf{B}) that can be fitted with different weights $\left(\mathbf{C}_{k}, k=1, \ldots, K\right)$ to many data matrices at the same time.

CANDECOMP/PARAFAC (CP)

Similarities between PCA and CP

- CP decomposes an array as a sum of rank one arrays
- $\operatorname{rank}(\underline{\mathbf{X}})=$ minimum number of rank one arrays for which CP gives perfect fit

Differences between PCA and CP

- only iterative algorithm for CP
- CP is usually unique
- preprocessing three-way data can be hard

S: $I \times I \times K$ array with symmetric slices (set of correlation matrices, for example)

Model

$$
\mathbf{S}_{k}=\mathbf{A} \mathbf{C}_{k} \mathbf{A}^{\prime}+\mathbf{E}_{k}
$$

INDSCAL is $C P$ with the constraint $\mathbf{A}=\mathbf{B}$

Minimize loss function:

$$
f_{\mathrm{IND}}(\mathbf{A}, \mathbf{C})=\sum_{k=1}^{K}\left\|\mathbf{S}_{k}-\mathbf{A} \mathbf{C}_{k} \mathbf{A}^{\prime}\right\|^{2}
$$

(1) CP, INDSCAL

(2) Motivation: how to catch flies?
(3) Some optimization background (back to High School!, and beyond)
4) The equivalence problem (from motivation to application)

KHL data

Kruskal, Harshman, Lundy (1983, 1985):

$$
\underline{\mathbf{X}}=\left[\begin{array}{cc|cc}
1 & 0 & 0 & 1 \\
0 & -1 & 1 & 0
\end{array}\right]
$$

Random starts of CP with $r=2$ components invariably give $f=2$.

It must be the global minimum.

KHL data

No!

Ten Berge, Kiers, De Leeuw (1988) $\inf (f)=1$

It must be LOCAL minima.

KHL data

No!

What we found

All solutions with $f=2$ are NOT minima (not even local!).

How can you reach such a conclusion?
(2) Motivation: how to catch flies?
(3) Some optimization background (back to High School!, and beyond)

4) The equivalence problem (from motivation to application)

Some optimization background

Goal

Given a scalar function $f: \mathbb{R}^{n} \longrightarrow \mathbb{R}$, how to find extremes (minima, maxima)?

Three types of points to consider:
(1) points in the border of the domain of f; Example: $f(x)=x^{3}, x$ between -1 and 1
(2) points where f is not twice continuously differentiable; Example: $f(x)=|x|$, for $x=0$
(3) points where f is twice continuously differentiable

How to optimize $f: \mathbb{R}^{n}$

\qquad

Step 1 Compute partial derivatives = 1st order derivatives for each variable, while the others are "constant".
Find stationary points (SPs) by solving the system

$$
\left\{\begin{array}{l}
\cdots \\
f_{i}\left(x_{1}, \ldots, x_{n}\right)=0, \quad(i=1, \ldots, n) \\
\cdots
\end{array}\right.
$$

Step 2 Analyze 2nd order derivatives = eigenvalues of the Hessian matrix:

$$
\text { Hess }=\left[\begin{array}{ccc}
f_{11} & \cdots & f_{1 n} \\
\vdots & \ddots & \vdots \\
f_{n 1} & \cdots & f_{n n}
\end{array}\right]
$$

How to optimize $f: \mathbb{R}^{n} \longrightarrow \mathbb{R}$

Decision rule:

- Hess is positive definite $\Longrightarrow S P$ is minimum
- Hess is negative definite $\Longrightarrow S P$ is maximum
- Hess is indefinite $\Longrightarrow S P$ is saddle point

Constrained optimization

Method of Lagrange multipliers

Useful to find maxima/minima of a function subject to constraints

Unconstrained.
No minimum, no maximum.

Constrained to red points. Minimum, Maximum.

CP, INDSCAL

Motivation: how to catch flies?

(3) Some optimization background (back to High School!, and beyond)

4 The equivalence problem (from motivation to application)

The equivalence problem

S: $I \times I \times K$ array with $I \times I$ symmetric frontal slices

- Carroll and Chang (1970) suggested to use CP to fit the INDSCAL model:

$$
\mathbf{S}_{k}=\mathbf{A} \mathbf{C}_{k} \mathbf{B}^{\prime}+\mathbf{E}_{k},
$$

and then "hope" that \mathbf{A} is columnwise proportional to \mathbf{B} (\mathbf{A} and \mathbf{B} equivalent).

- \mathbf{A} and \mathbf{B} seem equivalent in practical applications. However, contrived counterexamples do exist.

The equivalence problem

Result: $\mathbf{A} \neq \mathbf{B}$ is possible at global minima if slices are indefinite (Ten Berge and Kiers, 1991).

Example:

$$
\begin{gathered}
\underline{\mathbf{s}}=\left[\begin{array}{rrr|rrr}
1 & 0 & 0 & 0 & 0 & 2 \\
0 & -1 & 0 & 0 & -2 & 0 \\
0 & 0 & 1 & 2 & 0 & 0
\end{array}\right] \\
\mathbf{A}^{*}=\left[\begin{array}{rr}
\sqrt{1 / 3} & \sqrt{0.5} \\
-\sqrt{1 / 3} & 0 \\
\sqrt{1 / 3} & -\sqrt{0.5}
\end{array}\right], \mathbf{B}^{*}=\left[\begin{array}{rr}
\sqrt{1 / 3} & \sqrt{0.5} \\
\sqrt{1 / 3} & 0 \\
\sqrt{1 / 3} & -\sqrt{0.5}
\end{array}\right], \mathbf{C}^{*}=\left[\begin{array}{rr}
2 & 2 \\
0 & -2
\end{array}\right] .
\end{gathered}
$$

This solution minimizes CP's loss function:

$$
f_{\mathrm{CP}}(\mathbf{A}, \mathbf{B}, \mathbf{C})=\left\|\mathbf{S}_{1}-\mathbf{A} \mathbf{C}_{1} \mathbf{B}^{\prime}\right\|^{2}+\left\|\mathbf{S}_{2}-\mathbf{A} \mathbf{C}_{2} \mathbf{B}^{\prime}\right\|^{2} \geqslant 5
$$

and

$$
f_{\mathrm{CP}}\left(\mathbf{A}^{*}, \mathbf{B}^{*}, \mathbf{C}^{*}\right) \equiv 5
$$

The equivalence problem: $R=1$

Result: $\mathbf{A} \neq \mathbf{B}$ is only possible at non-optimal points if slices are non-negative definite (Ten Berge and Kiers, 1991).

Example:

$$
\begin{gathered}
\underline{\mathbf{s}}=\left[\begin{array}{lll|rrr}
3 & 1 & 0 & 3 & -1 & 0 \\
1 & 3 & 0 & -1 & 3 & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right] \\
\mathbf{A}^{*}=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right], \mathbf{B}^{*}=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right], \mathbf{C}^{*}=\left[\begin{array}{r}
1 \\
-1
\end{array}\right] .
\end{gathered}
$$

This solution does not minimize CP's loss function:

$$
f_{\mathrm{CP}}(\mathbf{A}, \mathbf{B}, \mathbf{C})=\left\|\mathbf{S}_{1}-\mathbf{A} \mathbf{C}_{1} \mathbf{B}^{\prime}\right\|^{2}+\left\|\mathbf{S}_{2}-\mathbf{A} \mathbf{C}_{2} \mathbf{B}^{\prime}\right\|^{2} \geqslant 21
$$

but

$$
f_{\mathrm{CP}}\left(\mathbf{A}^{*}, \mathbf{B}^{*}, \mathbf{C}^{*}\right) \equiv 39
$$

These points are, in fact, saddle points (Bennani Dosse and Ten Berge, 2008).

Second-order differential structure

Question

What is the general situation when $R>1$?

Approach to find an answer

Use simulation (run CP lots of times).
Analyze the first and second-order differential structures of the loss function of CP

$$
f_{\mathrm{CP}}(\mathbf{A}, \mathbf{B}, \mathbf{C})=\sum_{k=1}^{K}\left\|\mathbf{X}_{k}-\mathbf{A} \mathbf{C}_{k} \mathbf{B}^{\prime}\right\|^{2}
$$

But how to do this? Number of variables is too big.
Example: array $2 \times 2 \times 2, R=2$ components

$$
f_{\mathrm{CP}}(\mathbf{A}, \mathbf{B}, \mathbf{C}) \text { has } 12 \text { variables }
$$

Second-order differential structure

$$
\begin{equation*}
f_{\mathrm{CP}}(\mathbf{A}, \mathbf{B}, \mathbf{C})=\sum_{k=1}^{K}\left\|\mathbf{X}_{k}-\mathbf{A} \mathbf{C}_{k} \mathbf{B}^{\prime}\right\|^{2} \tag{1}
\end{equation*}
$$

Procedure

- parameter elimination - express \mathbf{C} as a function of \mathbf{A} and B (valid at stationary points):

$$
\text { row } i \text { of } \mathbf{C}=\left(\mathbf{A}^{\prime} \mathbf{A} * \mathbf{B}^{\prime} \mathbf{B}\right)^{-1} \operatorname{diag}\left(\mathbf{A}^{\prime} \mathbf{X}_{i} \mathbf{B}\right)
$$

- simplify target function (1)
- use matrix differential calculus: the variables to differentitate for are matrices A, B
- constrain A,B:
- columns of unit length (identification constraint)
- orthonormal

Second-order differential structure

Apply the same procedure to INDSCAL's loss function:

$$
f_{\mathrm{IND}}(\mathbf{A}, \mathbf{C})=\sum_{k=1}^{K}\left\|\mathbf{X}_{k}-\mathbf{A} \mathbf{C}_{k} \mathbf{A}^{\prime}\right\|^{2}
$$

What was done - for both f_{CP} and f_{IND} :

- Jacobian and Hessian matrices computed in closed form.
- second-order sufficient condition is now available to label SPs.

Applications 1

SVD-approach (Ten Berge, 1988)

- INDSCAL model under orthogonality constraints
- Claim: the algorithm sometimes stops at local optima

But saddle points are possible (for contrived examples).

Applications 1

Example:

$$
\underline{\mathbf{s}}=\left[\begin{array}{lll|rrr}
3 & 1 & 0 & 3 & -1 & 0 \\
1 & 3 & 0 & -1 & 3 & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

Global minimum ($f=1$)

$$
\mathbf{A}^{*}=\left[\begin{array}{rr}
\sqrt{0.5} & -\sqrt{0.5} \\
\sqrt{0.5} & \sqrt{0.5} \\
0 & 0
\end{array}\right], \mathbf{C}^{*}=\left[\begin{array}{ll}
4 & 2 \\
2 & 4
\end{array}\right] .
$$

Non-optimal SPs: saddle points

$$
\begin{array}{lll}
\mathbf{A}^{*}=\left[\begin{array}{ll}
0 & 1 \\
1 & 0 \\
0 & 0
\end{array}\right] & \mathbf{C}^{*}=\left[\begin{array}{ll}
3 & 3 \\
3 & 3
\end{array}\right] & f=5 \\
\mathbf{A}^{*}=\left[\begin{array}{ll}
\sqrt{0.5} & 0 \\
\sqrt{0.5} & 0 \\
0 & 1
\end{array}\right] & \mathbf{C}^{*}=\left[\begin{array}{ll}
4 & 0 \\
2 & 1
\end{array}\right] & f=20 \\
\mathbf{A}^{*}=\left[\begin{array}{ll}
0 & 1 \\
0 & 0 \\
1 & 0
\end{array}\right] & \mathbf{C}^{*}=\left[\begin{array}{ll}
0 & 3 \\
1 & 3
\end{array}\right] & f=22
\end{array}
$$

Applications 1

What happens for randomly generated data?

Simulation study

- $1503 \times 3 \times 3$ symmetric slice arrays with Gramian slices
- SVD-approach with $R=2$ components; 10 different initializations per array
- the second-order differential structure was analysed in each case

Results:

- saddle points did not occur: there are no indications that the SVD-approach converges to saddle points for randomly generated data
- local optima occurred for $\sim 8 \%$ of the arrays

Applications 2

Equivalence problem

- eleven cases considered ($R>1$ component, arrays with symmetric 3×3 slices)
- two types of arrays: Gramian vs non-Gramian slices
- 100 runs per array

Results

- $\mathbf{A} \neq \mathbf{B}$ did not occur for Gramian slices
- $\mathbf{A} \neq \mathbf{B}$ did occur for indefinite slices only in "sick" cases (degenerate)
- saddle points happen rarely

Conclusions

- loss functions of CP and INDSCAL were transformed into "simpler"(=independent variables) optimization functions
- first and second order derivatives were derived
- these tools allow to identify saddle points; if there is a saddle point: rerun the algorithm!
- simulation showed that saddle points do not occur frequently, but they do occur with positive probability

