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Definitions. Concepts. Notation

X: I × J × K three-way array
X1, ...,XK : I × J frontal slices�� ��X = [X1| · · · |XK ]

3PCA: find AI×P , BJ×Q, CK×R, GP×Q×R to minimize
∑

k tr(E′kEk )�� ��X =
∑

p
∑

q
∑

r gpqr (ap ◦ bq ◦ cr ) + E

CP: constrained 3PCA (P = Q = R, G superunit diagonal)�� ��X =
∑

r (ar ◦ br ◦ cr ) + E

Typical rank: minimal number of components R that allow a
perfect CP decomposition
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Definitions. Concepts. Notation

Weight of an array = # nonzero entries

3PCA is not unique: for any nonsingular SP×P , TQ×Q, UR×R

A −→ A(S′)−1

B −→ B(T′)−1

C −→ C(U′)−1

Ga = [G1| · · · |GR] −→ S′Ga(U⊗ T)

�� ��Tucker transformation
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Why?
Challenge: given X, find suitable S, T, U such that SX(U⊗ T) has
many zero entries (small weight)�� ��Why?

1 Facilitate interpretation of 3PCA decompositions

Example: rotate G so that several entries become zero

?
less interactions of components to account for

during interpretion of 3PCA

2 Constrained 3PCA: distinguish between tautologies and non-trivial
models

3 Mathematical applications: typical rank, maximal rank
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Results available so far (I)

Cohen (1974, 1975), MacCallum (1976), Kroonenberg (1983):
“diagonalize” frontal slices of G (P = Q)
Kiers (1992): “super-diagonalize” G (P = Q = R)
Kiers (1998): SIMPLIMAX

G −→ minimize ssq (m smallest elements)

Murakami et al. (1998)
P = QR − 1

Example: P = 5,Q = 3,R = 2

Ga = [G1|G2] −→


0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 0 1
µ1 0 0 0 µ2 0
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Results available so far (II)

Ten Berge & Kiers (1999)
P ×Q × 2, P > Q

Ga = [G1|G2] −→
[

IQ 0
0 IQ

]
Ten Berge et al. (2000): Multiple orthonormality
Rocci & Ten Berge (2002)

I P × P × 2
Example: P = 3

Ga =−→

 1 0 0 0 0 0
0 0 0 0 1 0
0 0 a 0 0 b

 or

 1 0 0 0 0 0
0 1 0 0 0 a
0 0 1 0 −a 0


I Orthogonal Complement Algorithm�� ��What about symmetric slice arrays?
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Symmetric slice arrays

X = [X1| · · · |XK ]: order I × I × K
I assume: X is randomly sampled from a continuous distribution with

symmetry constraint (Xk symmetric, ∀k )
I slices Xk linearly independent

I number of slices: K = 1,2, . . . ,
I(I + 1)

2︸ ︷︷ ︸
Kmax

symmetry-preserving transformation of X
I SI×I , UK×K nonsingular

Hl = S′
(∑

k

uklXk

)
S, l = 1,2, . . . ,K

I GOAL: introduce as many zeros in H as possible

Orthogonal Complement Method: “symmetric” version
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Symmetric slice I × I × Kmax arrays
{frontal slices} = basis for the space of symmetric I × I matrices
simple basis for the same space (Rocci & Ten Berge(1994)):
(notation: ei= column i of II)

eie′i , i = 1, . . . , I
eie′j + eje′i , 1 6 i < j 6 I

Example: I = 3 1 0 0
0 0 0
0 0 0

 ,
 0 0 0

0 1 0
0 0 0

 ,
 0 0 0

0 0 0
0 0 1


 0 1 0

1 0 0
0 0 0

 ,
 0 0 1

0 0 0
1 0 0

 ,
 0 0 0

0 0 1
0 1 0


frontal slice mix suffices
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Symmetric slice 2× 2× K arrays

Kmax = 3, so K = 1,2,3
2× 2× 3: done (Kmax situation)
2× 2× 1: use EVD

X −→
[

1 0
0 α

]
; if α < 0 :

[
0 1
1 0

]
2× 2× 2 = orthogonal complement of 2× 2× 1

X −→
[
α 0 0 1
0 −1 1 0

]
; if α < 0 :

[
1 0 0 0
0 0 0 1

]
Conclusion for 2× 2× 2:

I weight 4 is always possible
I if Xc has eigenvalues of both signs then weight 2 is possible
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Symmetric slice 3× 3× K arrays
Kmax = 6, so K = 1,2,3,4,5,6
3× 3× 6: done (Kmax situation)
3× 3× 1: use EVD

X −→

 d1 0 0
0 d2 0
0 0 d3

 ; if d2d3 < 0 :

 d1 0 0
0 0 2d2
0 2d2 0


3× 3× 5 = orthogonal complement of 3× 3× 1

X −→
[

1 0 0 1 0 0 0 1 0 0 0 1 0 0 0
0 α 0 0 0 0 1 0 0 0 0 0 0 0 1
0 0 0 0 0 β 0 0 0 1 0 0 0 1 0

]
[

1 0 0 1 0 0 0 1 0 0 0 1 0 0 0
0 α 0 0 0 0 1 0 0 0 0 0 0 0 1
0 0 0 0 0 β 0 0 0 1 0 0 0 1 0

]
Conclusion for 3× 3× 5:

I weight 10 is always possible
I if Xc has eigenvalues of both signs then weight 9 is possible
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Symmetric slice 3× 3× K arrays

3× 3× 2: see EVD(X−1
1 X2)

I real eigenvalues

X −→

 0 0 0 β 0 0
0 α 0 0 0 0
0 0 1 0 0 1

 ; also:

 −α 0 0 0 0 0
0 1 0 0 0 1
0 0 1 0 1 0


I complex eigenvalues

X −→

 −α 0 0 0 0 0
0 1 0 0 0 1
0 0 −1 0 1 0


Conclusion for 3× 3× 2:

I weight 5 is always possible
I if X−1

1 X2 has real eigenvalues then weight 4 is possible
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Symmetric slice 3× 3× K arrays

3× 3× 4 = orthogonal complement of 3× 3× 2 1 0 0 1 0 0 0 1 0 0 0 1
0 α 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 δα 0 0 0 1 0 0

 3× 3× 4

(δ = 1/− 1 in real/complex case)

Conclusion for 3× 3× 4:
I weight 8 is always possible

3× 3× 3: still open!
I when a 3× 3× 3 array has an orthogonal complement, it is also

3× 3× 3. . .
I simulation: a weight 9 pattern seems to be possible almost 90% of

the times
I to be continued (. . . )
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Symmetric slice 4× 4× K arrays
Kmax = 10, so K = 1,2, · · · ,8,9,10
4× 4× 10: done (Kmax situation)
4× 4× 1: use EVD

in general: X −→

2664
d1 0 0 0
0 d2 0 0
0 0 d3 0
0 0 0 d4

3775
if d1,d2,d3 > 0

d4 < 0
−→

2664
d1 0 0 0
0 d2 0 0
0 0 0 2d3

0 0 2d3 0

3775
if d1,d3 > 0

d2,d4 < 0
−→

2664
0 2d1 0 0

2d1 0 0 0
0 0 0 2d3

0 0 2d3 0

3775
4× 4× 9 = orthogonal complement of 4× 4× 1

I weight 18 is always possible
I depending on the signs of eigs(Xc) we can have weight 17 or 16
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Symmetric slice 4× 4× K arrays
4× 4× 2: see EVD(X−1

1 X2)
I real eigenvalues: weight 6 0 0 0 0 γ 0 0 0

0 α 0 0 0 0 0 0
0 0 β 0 0 0 δ 0
0 0 0 1 0 0 0 1


I one pair of complex eigenvalues: weight 7 α 0 0 0 γ 0 0 0

0 β 0 0 0 0 0 0
0 0 1 0 0 0 0 1
0 0 0 −1 0 0 1 0


I two pairs of complex eigenvalues: weight 8 1 0 0 0 0 γ 0 0

0 −1 0 0 γ 0 0 0
0 0 1 0 0 0 0 1
0 0 0 −1 0 0 1 0
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Symmetric slice 4× 4× K arrays

4× 4× 8 = orthogonal complement of 4× 4× 2
I any symmetric slice 4× 4× 8 array can almost surely be simplified

into one out of two weight 18 arrays

Example: one of the targets ? 0 0 0 0 0 0 0 0 0 0 0 0 ? 0 0
0 ? 0 0 0 ? 0 0 0 ? 0 0 ? 0 0 0
0 0 0 ? 0 0 ? 0 0 0 0 0 0 0 0 0
0 0 ? 0 0 0 0 0 0 0 0 ? 0 0 0 0

∣∣∣∣∣∣∣
0 0 ? 0 0 0 0 ? 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 ? 0 0 0 0 ?
? 0 0 0 0 0 0 0 0 ? 0 0 0 0 0 0
0 0 0 0 ? 0 0 0 0 0 0 0 0 ? 0 0
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Maximal simplicity

Question: can simpler targets be found for the cases previously
presented?

Answer:
3× 3× K for K = 1,2,4,5,6: NO (proved)
4× 4× K for K = 8,9: NO(?) (simulation)
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Example of application: typical rank
X: symmetric slice 3× 3× 4 array
Ten Berge et al. (2004)�� ��typical rank (X)= {4,5}
rank=4?, rank=5?
Check if roots of a certain fourth degree polynomial are real and
distinct.

Using 3× 3× 4 simple form , and applying the same reasoning as in Ten
Berge et al. (2004), we conclude that:

rank (X)=4 iif δ = 1 and α > 0 (and rank is 5 otherwise)
a CP decomposition is now straightforward

Example: rank=4

A =
[

1 1 1 1
0 0

√
α −

√
α√

α −
√
α 0 0

]
,C =

[
0 0 0.5 0.5

0.5 0.5 0 0
0 0 0.5

√
α−1 −0.5

√
α−1

0.5
√
α−1 −0.5

√
α−1 0 0

]
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Conclusions. Considerations. Developments
Conclusions

simplification achieved for some types of arrays with symmetric
frontal slices; closed form rotation matrices available
maximal simplicity achieved (mathematically proved or empirically
verified via SIMPLIMAX)
typical rank considerations come as nice follow-ups

Considerations
3PCA core arrays are not “randomly sampled from a continuous
distribution”, but do behave as if they were
valid contribution for Matrix Theory: simultaneous reduction of
more than a pair of matrices to sparse forms is scarce

Developments
extend results to other orders
address issues like: maximal simplicity, typical rank
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Muchas gracias!

QUESTIONS?
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