Simplicity transformations for three-way arrays with symmetric slices

Jorge Tendeiro

University of Groningen
12 December 2007 / IOPS Conference

Outline

(9) Introducing three-way arrays

- Definitions, concepts
(2) Methods to analyze three-way arrays
- PCA - a 2D motivation
- Extending PCA to 3D - Candecomp/Parafac
- Extending PCA to 3D - Tucker3
(3) Simplifying three-way arrays
- Purpose
- Overview of existing simplicity results
- Arrays with symmetric slices

Definition

Idea

- three-way arrays: generalize matrix structure to 3D
- loaf-of-bread structure

Examples of three-way data

- different anxiety measures, different circumstances, various subjects
- sales of different products, in different shops, in different weeks
- job requirements for various jobs, according to various job analysts

SLICES of a three-way array

Three-way array

Horizontal slices (\mathbf{X}_{i})

Lateral slices (\mathbf{X}_{j})

Frontal slices $\left(\mathbf{X}_{k}\right)$

Unfolding a three-way array

Frontal slices $\left(\mathbf{X}_{k}\right)$

$$
(3 \mathrm{D} \longrightarrow 2 \mathrm{D})
$$

Matricizing \mathbf{X}

PCA

X : matrix of order $I \times J$ ($I=$ subjects, $J=$ variables)
Goal: representation of variables in low-space dimension.

$$
x_{i j}=\sum_{r=1}^{R} a_{i r} b_{j r}+e_{i j}
$$

- $x_{i j}=$ score of subject i on variable j
- $a_{i r}=$ score of subject i on component r
- $b_{j r}=$ loading of variable j on component r
- $e_{i j}=$ residual error

PCA - other formulation

$$
\mathbf{X}=\sum_{r=1}^{R}\left(\mathbf{a}_{r} \circ \mathbf{b}_{r}\right)+\mathbf{E}
$$

- $\mathbf{a}_{r} \circ \mathbf{b}_{r}$: rank-1 matrix
- PCA decomposes \mathbf{X} as a sum of rank-1 matrices
- $\operatorname{rank}(\mathbf{X})$: minimum R such that $\mathbf{E} \equiv \mathbf{0}$

CANDECOMP/PARAFAC (CP)

X : array of order $I \times J \times K$ ($I=$ subjects, $J=$ variables,
$K=$ situations)
Goal: find components for subjects, variables and situations.

$$
x_{i j k}=\sum_{r=1}^{R} a_{i r} b_{j r} c_{k r}+e_{i j k}
$$

- $x_{i j k}=$ score of subject i on variable j on situation k
- $a_{i r}=$ score of subject i on component r
- $b_{j r}=$ loading of variable j on component r
- $c_{k r}=$ loading of situation k on component r
- $e_{i j k}=$ residual error

CP - other formulation

$$
\underline{\mathbf{X}}=\sum_{r=1}^{R}\left(\mathbf{a}_{r} \circ \mathbf{b}_{r} \circ \mathbf{c}_{r}\right)+\underline{\mathbf{E}}
$$

- $\mathbf{a}_{r} \circ \mathbf{b}_{r} \circ \mathbf{c}_{r}$: rank-1 array
- CP decomposes $\underline{\mathbf{X}}$ as a sum of rank-1 arrays
- $\operatorname{rank}(\underline{\mathbf{X}}):$ minimum R such that $\underline{\mathbf{E}} \equiv \mathbf{0}$

Tucker3

X : array of order $I \times J \times K$ ($I=$ subjects, $J=$ variables, $K=$ situations)
Goal: find components for subjects, variables and situations.

$$
x_{i j k}=\sum_{p=1}^{P} \sum_{q=1}^{Q} \sum_{r=1}^{R} g_{p q r}\left(a_{i p} b_{j q} c_{k r}\right)+e_{i j k},
$$

- $x_{i j k}=$ score of subject i on variable j on situation k
- $a_{i p}=$ score of subject i on component p
- $b_{j q}=$ loading of variable j on component q
- $c_{k r}=$ loading of situation k on component r
- $g_{p q r}=$ weight (core array $\underline{\mathbf{G}}$, order $P \times Q \times R$)
- $e_{i j k}=$ residual error

Tucker3 - other formulations

$$
\underline{\mathbf{X}}=\sum_{p=1}^{P} \sum_{q=1}^{Q} \sum_{r=1}^{R} g_{p q r}\left(\mathbf{a}_{p} \circ \mathbf{b}_{q} \circ \mathbf{c}_{r}\right)+\underline{\mathbf{E}}
$$

- $\mathbf{a}_{r} \circ \mathbf{b}_{r} \circ \mathbf{c}_{r}$: rank-1 array
- Tucker3 decomposes $\underline{\mathbf{X}}$ as a sum of rank-1 arrays
- $\operatorname{rank}(\underline{\mathbf{X}}) \leqslant P Q R$ (usually $\operatorname{rank}(\underline{\mathbf{X}}) \ll P Q R$)

Formula using unfolded notation
$\underline{\mathbf{X}}(I \times J \times K) \quad \longrightarrow \mathbf{X}=\left[\mathbf{X}_{1}\left|\mathbf{X}_{2}\right| \cdots \mid \mathbf{X}_{K}\right]$ (fitted part)
$\underline{\mathbf{G}}(P \times Q \times R) \quad \longrightarrow \mathbf{G}=\left[\mathbf{G}_{1}\left|\mathbf{G}_{2}\right| \cdots \mid \mathbf{G}_{R}\right]$

$$
\mathbf{X}=\mathbf{A} \mathbf{G}\left(\mathbf{C}^{\prime} \otimes \mathbf{B}^{\prime}\right)
$$

Tucker3 - seeing CP as particular situation

- Tucker3 reduces to Candecomp/Parafac when the core array has a super-diagonal form:

$$
\underline{\mathbf{G}}=\left[\left.\begin{array}{cccc|cccc}
1 & 0 & \cdots & 0 & 0 & 0 & \cdots & 0 \\
0 & 0 & \cdots & 0 & 0 & 1 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & 0 & 0 & 0 & \cdots & 0
\end{array} \right\rvert\, \begin{array}{cccc}
0 & 0 & \cdots & 0 \\
0 & 0 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & 1
\end{array}\right]
$$

- only interactions between corresponding components are accounted for in CP

Tucker3 - freedom of rotation

PCA's freedom of rotation (motivation)

S nonsingular

$$
\begin{aligned}
\mathbf{X} & =\mathbf{A} \mathbf{B}^{\prime} \\
& =(\mathbf{A S})\left(\mathbf{S}^{-1} \mathbf{B}^{\prime}\right)
\end{aligned}
$$

Tucker3's freedom of rotation

S nonsingular

$$
\begin{aligned}
\mathbf{X} & =\mathbf{A} \mathbf{G}\left(\mathbf{C}^{\prime} \otimes \mathbf{B}^{\prime}\right) \\
& =(\mathbf{A} \mathbf{S})\left((\mathbf{S})^{-1} \mathbf{G}\right)\left(\mathbf{C}^{\prime} \otimes \mathbf{B}^{\prime}\right)
\end{aligned}
$$

- same applies to \mathbf{B} and \mathbf{C}

Tucker3 - illustration (Kiers \& Van Mechelen (2001))

X=data set of. . .

- 6 individuals: Anne, Bert, Claus, Dolly, Edna, Frances
- 5 response variables: emotional, sensitive, caring, thorough, accurate
- 4 different situations: doing an exam, giving a speech, family picnic, meeting a new date

Component matrix A		
Individual	Femininity	Masculinity
Anne	1.0	0.0
Bert	0.0	1.0
Claus	0.0	1.0
Dolly	1.0	0.0
Edna	0.5	0.5
Frances	1.0	0.0

Tucker3 - illustration (Kiers \& Van Mechelen (2001))

Component matrix B

Response	Emotionality	Conscientiousness
Emotional	1.0	0.0
Sensitive	1.0	0.0
Caring	0.6	0.4
Thorough	0.0	1.0
Accurate	0.0	1.0

Component matrix C

Situation	Performance situations	Social situations
Doing an exam	1.0	0.0
Giving a speech	0.8	0.2
Family picnic	0.0	1.0
Meeting a new date	0.3	1.2

Tucker3 - illustration (Kiers \& Van Mechelen (2001))

Core array \underline{G}

	Performance situations	
	Emotionality	Conscientiousness
Femininity	0.0	3.0
Masculinity	0.0	2.0

Social situations

	Emotionality	Conscientiousness
Femininity	3.0	0.0
Masculinity	1.0	1.0

Simplify three-way arrays

Goal

$$
\mathbf{S}, \mathbf{T}, \mathbf{U}=?: \quad \mathbf{H}=\underset{\downarrow}{\mathbf{S X}(\mathbf{U} \otimes \mathbf{T})}
$$

- many zero entries = few nonzero entries
- weight of $\underline{\boldsymbol{H}}=$ \# nonzero entries of $\underline{\boldsymbol{H}}$

Why?

Statistical reasons:

- Tucker3: simpler core $\underline{\mathbf{G}} \Longrightarrow$ usually simpler interpretation
- constrained Tucker3: distinguish between tautology and non-trivial model

Mathematical reasons:

- typical rank, maximal rank

Some examples (I-II)

$\underline{\mathrm{X}}$ of order $P \times Q \times R, P=Q R$

Example: $\underline{\mathbf{X}}$ of order $6 \times 3 \times 2$

$$
\underline{\mathbf{X}} \longrightarrow\left[\begin{array}{lll|lll}
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right]=\mathbf{X}^{-1} \mathbf{X}\left(\mathbf{I}_{2} \otimes \mathbf{I}_{3}\right)
$$

Some examples (II-II)

$\underline{\mathrm{X}}$ of order $P \times Q \times R, P=Q R-1$

Murakami, Ten Berge \& Kiers (1998)
Example: $\underline{\mathbf{X}}$ of order $5 \times 3 \times 2$
$\mathbf{X} \longrightarrow\left[\begin{array}{ccc|ccc}0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ \mu_{1} & 0 & 0 & 0 & \mu_{2} & 0\end{array}\right]$

Our goal: simplifying arrays with SYMMETRIC slices

Example: set of correlation matrices over time

Number of symmetric slices: $K=1, \ldots, \underbrace{\frac{I(I+1)}{2}}_{K_{\max }}$.

Some results proven

Simplification achieved for:

- $3 \times 3 \times K$ when $K=1,2,4,5,6$
- $4 \times 4 \times K$ when $K=1,2,8,9,10$
- $I \times I \times 1$
- $I \times I \times\left(K_{\max }-1\right)$
- $I \times I \times K_{\max }$

Example: symmetric slice array $3 \times 3 \times 4$

$$
\left[\begin{array}{ccc|ccc|ccc|ccc}
1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\
0 & \mu_{1} & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & \mu_{2} & 0 & 0 & 0 & 1 & 0 & 0
\end{array}\right]
$$

Some results proven

Maximal simplicity

- proved for all $3 \times 3 \times K$ presented
- simulations using SIMPLIMAX (Kiers, 1998) seem to confirm maximal simplicity for the targets deduced for $4 \times 4 \times K$ (ongoing)

Typical rank

Rules-of-thumb were deduced concerning inspection of typical rank for $3 \times 3 \times K, K \neq 3$ (completion of Ten Berge, Sidiropoulos \& Rocci, 2004)

- example ${ }^{3 \times 3 \times 4}$: rank is 4 iff $\mu_{1}, \mu_{2}>0$, otherwise is 5

Conclusions, developments

Conclusions

- simplification achieved for some types of arrays with symmetric frontal slices; closed form rotation matrices available
- maximal simplicity achieved (mathematically proved or empirically verified via SIMPLIMAX)
- typical rank considerations come as nice follow-ups

Developments

- extend results to other orders
- if possible, use procedures to address issues like: maximal simplicity, typical rank

