-	-	
Sousa	lenc	leiro
00030,	10110	10110

Introduction

Validation in Clustering

Validation Methodology i A.H.C.

An application

Conclusion and perspectives

Fernanda Sousa Jorge Tendeiro

FEUP, Universidade do Porto

ASMDA 2005

Brest, 17-20 May

Introduction

A Validation Methodology in Hierarchical Clustering

Sousa, Tendeiro

Introduction

Validation in Clustering

Validation Methodology in A.H.C.

An application

Conclusion and perspectives

Area of research

Ascending Hierarchical Clustering (A.H.C.)

Presentation scheme

- validation in A.H.C.
 - comparison of clustering structures
 - random generation of dendrograms or ultrametric matrices
- methodology of validation
- an application
- conclusion and perspectives

□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□</li

Some questions

A Validation Methodology in Hierarchical Clustering

Sousa, Tendeiro

Introduction

Validation in Clustering

- Motivation
- Some questions Several contribution:
- Validation Methodology in A.H.C.
- An application
- Conclusion and perspectives

Questions

- Is there a structure of the initial data? Is there a close relation between the initial and final structures?
- Which choice of comparison functions is to result into the best clustering?
- How can we assure that the division into several clusters suggested by the algorithm does not distort the structure of the initial data?
- Do the relations between the elements to classify lead to artificial clusters without real meaning?

Sousa, Tendeiro

Introduction

Validation in Clustering

Motivation Some questions

Several contributions

Validation Methodology in A.H.C.

An application

Conclusion and perspectives

- Bock...
- Gordon e Milligan...
- Lapointe e Legendre...
- Barthélemy et al...
- Bel Mufti...
- Hubert...

Several contributions

Sousa, Tendeiro

Introduction

Validation in Clustering

Validation Methodology in A.H.C.

Main ideas

Comparison of clustering structures

Random generation or dendrograms Methodology

An application

Conclusion and perspectives

Validation Methodology in A.H.C.

Results of an A.H.C. method depend on...

- inicial data
- method used

Moreover...

The behaviour of an A.H.C. method is influenced by the structure of the data.

Main goal

Describe the performance of several A.H.C. methods, when applied to different types of data.

Useful tools

- comparison of clustering structures
- random generation of dendrograms

Sousa, Tendeiro

Introduction

Validation in Clustering

Validation Methodology i A.H.C.

Main ideas

Comparison of clustering structures

Random generation of dendrograms

An application

Conclusion and perspectives

Comparison of clustering structures

Ordinal approach

Uses the ordenations of indexed values.

Idea

clustering structures (proximity matrix, hierarchy, partition)

preordenations

"Pratical" consequence

Comparison of clustering structures transformed into comparison of preordenations.

Sousa, Tendeiro

Introduction

Validation in Clustering

Validation Methodology i A.H.C.

Main ideas Comparison of clustering structure

Random generation of dendrograms

Methodology

An application

Conclusion and perspectives

Random generation of dendrograms

We want to randomly generate...

- topologies
- labels
- aggregation levels

Methods used

- uniform sensu Furnas (Furnas 1984)
 - Uniform (Sousa & Nicolau 2000)
 - Double Permutation (Lapointe & Legendre 1991)
 - RA (Podani 2000)
- not uniform
 - Shape Parameter (Sousa 2000)

A Validation Methodology in Hierarchical Clustering

Sousa, Tendeiro

Introduction

Validation in Clustering

Validation Methodology i A.H.C.

Main ideas Comparison of clustering structu

Random generation of dendrograms

Methodology

An application

Conclusion and perspectives

For a fixed number of elements to classify, consider the following steps:

Algorithm (1 of 2)

- Generate a random dendrogram; the associated ultrametric matrix, M₀, will be taken as the (initial) dissimilarity matrix.
- For each A.H.C. criterion to study: obtain a hierarchy H₀, and compare M₀ with H₀ (comparison C¹).
- Oisturb matrix M₀ by settling a disturbance coefficient; this creates the dissimilarity matrix M_i. Compare M₀ with M_i (comparison C²).

A Validation Methodology in Hierarchical Clustering

Sousa, Tendeiro

Algorithm (2 of 2)

Introduction

Validation in Clustering

Validation Methodology i A.H.C.

Main ideas Comparison of clustering structur

Random generation of dendrograms

Methodology

An application

Conclusion and perspectives

For each A.H.C. criterion to study: obtain a hierarchy H_i, compare M_i with H_i (comparison C³) and compare H₀ with H_i (comparison C⁴).

Repeat the steps 3. and 4. a great number of times for the same disturbance coefficient.

Repeat the steps 3. to 5. for different values of the disturbance coefficient.

A Validation Methodology in Hierarchical Clustering

Sousa, Tendeiro

Introduction

Validation in Clustering

- Validation Methodology A.H.C.
- Main ideas Comparison of clustering structures
- Random generation of dendrograms Methodology
- wethodology
- An application
- Conclusion and perspectives

Structures

- *M*₀: generated ultrametric matrix
- *H*₀: output of an A.H.C. applied to *M*₀
- *M_i*: ultrametric matrix after disturbance
- *H_i*: output of an A.H.C. applied to *M_i*

A Validation Methodology in Hierarchical Clustering

Sousa, Tendeiro

Introduction

Validation in Clustering

Validation Methodology A.H.C.

Main ideas Comparison of clustering structure Random generation

Random generation dendrograms Methodology

.

Conclusion and perspectives

Hi Mi <u>c</u>3

Comparisons

- C¹: analyse a criterion behaviour when applied to ultrametric data
- C²: control the impact of the disturbance over the associated preordenations
- C³: analyse the ability of a criterion to recover a structure after disturbance
- C⁴: controls the robustness of the method

Options taken

A Validation Methodology in Hierarchical Clustering

Sousa, Tendeiro

Introduction

Validation ir Clustering

Validation Methodology in A.H.C.

An application

Options taken Results

Conclusion and perspectives

< 同 >

< ≣ > < ≣ > ______

Options

- number of elements to classify: 10
- three types of structures generated:
 - predominantly chain type trees (shape parameter method, p close to 0)
 - predominantly balanced trees (shape parameter method, p close to 0.5)
 - completely random trees (uniform method)
- several methods of A.H.C.:
 - classical approach (SL, CL, HMEAN, HMED)
 - VL approach (AVB, AVM, HVMED)
- different values of the disturbance coefficient
- coefficient of comparison used: Goodman-Kruskal
- comparisons C^1 , C^2 , C^3 , C^4 analysed

Comparison C^1 : $M_0 - H_0$

Sousa, Tendeiro

Introduction

Validation in Clustering

Validation Methodology in A.H.C.

An application Options taken Results

Conclusion and perspectives

Г _{GK} va	lues,	uniform	generation
--------------------	-------	---------	------------

	AVB	AVM	HVMED
mean	.725	.839	.885
median	.749	.913	.940
dispersion	.445	.094	.094

T_{GK} values, shape parameter, p = .025

	AVB	AVM	HVMED
mean	.632	.966	.970
median	.644	1	1
dispersion	.020	<0.001	<0.001

T_{GK} values, shape parameter, p = 0.5

	AVB	AVM	HVMED
mean	.851	.792	.844
median	.893	.851	.932
dispersion	.193	.018	.433

14/22

Comparison C^2 : $M_0 - M_i$

Sousa, Tendeiro

Introduction

Validation in Clustering

Validation Methodology i A.H.C.

An application Options taken

Conclusion and perspectives

Utility

- the analyse of the *T_{GK}* values was useful to determine several disturbance values for *C*³ e *C*⁴ comparisons
- 4 values of disturbance δ were considered

Comparison C^3 : $M_i - H_i$

Sousa, Tendeiro

Introduction

Validation in Clustering

Validation Methodology in A.H.C.

An application Options taken

Conclusion and perspectives

Median values of T_{GK} , uniform generation

δ	SL	CL	HMEAN	HMED	AVB	AVM	HVMED
.05	.965	.965	.968	.968	.610	.795	.841
.15	.681	.727	.748	.743	.598	.581	.652
.25	.581	.618	.658	.657	.561	.496	.569
.5	.404	.456	.527	.523	.421	.341	.418

Comparison C^3 : $M_i - H_i$

Sousa, Tendeiro

Introduction

Validation in Clustering

Validation Methodology i A.H.C.

An application Options taken

Conclusion and perspectives

Лe	edian	value	es of	Т _{GK} , sha	ape pai	ramet	er, <i>p</i> :	= .025
	δ	SL	CL	HMEAN	HMED	AVB	AVM	HVMED
	.05	.938	.966	.959	.959	.543	.935	.933
	.15	.766	.773	.808	.805	.530	.748	.747
	.25	.656	.641	.717	.718	.516	.665	.662
	.5	.438	.479	.556	.548	.408	.431	.449

Median values of T_{GK} , shape parameter, p = .5

δ	SL	CL	HMEAN	HMED	AVB	AVM	HVMED
.05	.948	.952	.953	.953	.844	.586	.805
.15	.721	.728	.764	.754	.688	.566	.673
.25	.640	.620	.690	.687	.611	.525	.597
.5	.420	.470	.540	.536	.432	.347	.431

17/22

Comparison C^4 : $H_0 - H_i$

Sousa, Tendeiro

Introduction

Validation in Clustering

Validation Methodology in A.H.C.

An application Options taken

Conclusion and perspectives

Median values of T_{GK} , uniform generation

δ	SL	CL	HMEAN	HMED	AVB	AVM	HVMED
.05	.990	.993	.992	.991	.944	.958	.970
.15	.954	.927	.949	.920	.881	.904	.869
.25	.778	.709	.819	.789	.748	.664	.679
.5	.472	.353	.522	.493	.442	.271	.345

Comparison C^4 : $H_0 - H_i$

Sousa, Tendeiro

Introduction

Validation in Clustering

Validation Methodology i A.H.C.

An application Options taken Results

Conclusion and perspectives

Aedian values of T_{GK} , shape parameter, $p = .025$										
	δ	SL	CL	HMEAN	HMED	AVB	AVM	HVMED		
	.05	.978	.971	.979	.974	.828	.959	.941		
	.15	.930	.810	.914	.887	.759	.909	.868		
	.25	.878	.611	.810	.780	.560	.859	.820		
	.5	.617	.251	.523	.479	.341	.596	.560		

Median values of T_{GK} , shape parameter, p = .5

	δ	SL	CL	HMEAN	HMED	AVB	AVM	HVMED
	.05	.989	.986	.990	.980	.984	.977	.938
	.15	.890	.859	.922	.877	.898	.762	.775
	.25	.833	.701	.814	.790	.800	.630	.641
	.5	.502	.399	.566	.523	.559	.347	.446
-							_	

19/22

Some conclusions

A Validation Methodology in Hierarchical Clustering

Sousa, Tendeiro

Introduction

Validation ir Clustering

Validation Methodology in A.H.C.

An application

Conclusion and perspectives

Some conclusions

General conclusions and perspectives

> <⊡> <⊒>

< ≣ → म

From the application we can say that...

- VL methods have more difficulty to recover the inicial structure data than classical methods
- classical and VL methods are equally robust (similar ability to resist to disturbances of the data)
- behaviour of VL methods:
 - AVB: better with balanced trees
 - AVM: better with chain trees
 - HVMED: it's the one which resists most to the variation of data structure
- behaviour of classical methods:
 - SL: works well with chain trees; very robust
 - CL: works well with balanced trees
 - *HMEAN* and *HMED*: similar behaviour in all situations analysed

Sousa, Tendeiro

Introduction

Validation in Clustering

Validation Methodology in A.H.C.

An application

Conclusion and perspectives

Some conclusions

General conclusions and perspectives

General conclusions and perspectives

Topics

- need to validate clustering results
- the behaviour of a clustering method strongly depends on the kind and intensity of the data structure
- simulation studies are very useful in this area, since theoretical studies are extremely difficult
- lead studies with different options

References

A Validation Methodology in Hierarchical Clustering

Sousa, Tendeiro

Introduction

Validation i Clustering

Validation Methodology i A.H.C.

An application

Conclusion and perspectives

Some conclusions

General conclusions and perspectives

> < ⊡ > < ⊒ >

> < ≣ → म

Frank, O.; Svensson, K. (1981)

On Probability Distributions of Single-Linkage Dendrograms

Journal of Statistical Computation and Simulation, 12:121–131

Lapointe, F. J.; Legendre, P. (1991)

The Generation of Random Ultrametric Matrices Representing Dendrograms *Journal of Classification*, 8:177–200

🛸 Sousa, F. (2000)

Novas Metodologias e Validação em Classificação Hierárquica Ascendente

Dissertação de Doutoramento, Universidade Nova de Lisboa