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Overview

1 Within-subjects design with k = 2 levels: Difference scores vs ANCOVA
One-within
One-between, one-within

2 Within-subjects design with k > 2 levels
RM-ANOVA (within-subjects ANOVA)
RM-MANOVA (profile analysis)
RM-Multilevel analysis (linear mixed model)

3 Missing data (brief)
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Within-subjects design with k = 2 levels: Difference scores vs ANCOVA

Within-subjects design with k = 2 levels:
Difference scores vs ANCOVA
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Within-subjects design with k = 2 levels: Difference scores vs ANCOVA One-within

Pretest-posttest design (one-within)

• Two repeated measures: Pretest and posttest
(i.e., one within-subjects factor with k = 2 levels).

• For now assume a one-group sample
(i.e., no between-subjects factors).

Pretest y0 Posttest y1

s1 s1

s2 s2

· · · · · ·
sn sn
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Within-subjects design with k = 2 levels: Difference scores vs ANCOVA One-within

Pretest-posttest design (one-within) – Possible analyses

1 Paired t-test

• This is equivalent to RM-ANOVA when k = 2.
• Consider difference scores: d = y1 − y0.

Then paired t-test is equivalent to one-sample t-test on di .
• In regression terms, this consists of fitting a model without predictors:

y1i − y0i︸ ︷︷ ︸
di

= β0 + εi .

Paired t-test = t-test associated to β0.

2 ANCOVA
• Regress posttest on pretest.

y1i = β0 + β1y0i + εi

y1i − β1y0i︸ ︷︷ ︸
d∗
i

= β0 + εi .

ANCOVA test = t-test associated to β0.
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Within-subjects design with k = 2 levels: Difference scores vs ANCOVA One-within

Pretest-posttest design (one-within) – Comparison

Test Model H0

Paired t-test y1i − β1y0i = β0 + εi µd = µ1 − µ0 = 0
ANCOVA y1i − β1y0i = β0 + εi µ∗

d = µ1 − β1µ0 = 0

• Paired t-test is a constrained version of ANCOVA (β1 = 1).

• β1 = 1 is a strong assumption in some cases.

• Thus, ANCOVA is more flexible:
Smaller error variance, larger power.

• Price to pay for ANCOVA: Loss of 1df.

Observe that the paired t-test and ANCOVA test slightly different H0s:

• Paired t-test: Population mean of difference scores is zero.

• ANCOVA: Population mean posttest score, adjusted for pretest scores, is zero.
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Within-subjects design with k = 2 levels: Difference scores vs ANCOVA One-between, one-within

Pretest-posttest design (one-between, one-within)

• Two repeated measures: Pretest and posttest
(i.e., one within-subjects factor with k = 2 levels).

• More than one group of subjects
(i.e., one between-subjects factor with g levels).

This is a mixed between-within subjects design.

Group Pretest y0 Posttest y1

s1 s1

s2 s21
· · · · · ·

· · · · · · · · ·
· · · · · ·
sn−1 sn−1g
sn sn
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Within-subjects design with k = 2 levels: Difference scores vs ANCOVA One-between, one-within

Pretest-posttest design (one-between, one-within) –
Possible analyses

1 Paired t-test
• This is equivalent to RM ANOVA when k = 2, with one between-subjects

factor.
• Consider difference scores: d = y1 − y0.

Then paired t-test is equivalent to between-subjects ANOVA on di .
• In regression terms:

y1i − y0i︸ ︷︷ ︸
di

= β0 + (β1D1 + · · ·+ βg−1Dg−1)︸ ︷︷ ︸
between-subjects factor

+ εi .

2 ANCOVA
• Regress posttest on pretest and covariates (dummy variables).

y1i = β0 + (β1D1 + · · ·+ βg−1Dg−1) + βgy0i + εi

y1i − βgy0i︸ ︷︷ ︸
d∗
i

= β0 + (β1D1 + · · ·+ βg−1Dg−1) + εi .
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Within-subjects design with k = 2 levels: Difference scores vs ANCOVA One-between, one-within

Pretest-posttest design (one-between, one-within) –
Comparison

Paired t-test y1i − β1y0i = β0 + (β1D1 + · · ·+ βg−1Dg−1) + εi
ANCOVA y1i − βgy0i = β0 + (β1D1 + · · ·+ βg−1Dg−1) + εi

• As before, the paired t-test is a constrained version of ANCOVA (βg = 1).

• Price to pay for ANCOVA:

- Loss of 1df.
- The ANCOVA assumption of equality of regression slopes needs to be assessed

when g > 1.
(Look at size of interaction effect between both effects.)

• As before, paired t-test and ANCOVA test slightly different H0s
(difference scores vs adjusted posttest scores).
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Within-subjects design with k = 2 levels: Difference scores vs ANCOVA One-between, one-within

Pretest-posttest design – How to choose?

Is design experimental or quasi-experimental/ observational?

Experimental
• Randomized groups imply no systematic initial differences between groups.

• Thus, pretest scores on average are equal across groups.

• ANCOVA adjusted means are basically equal to the unadjusted means.

• In this case, paired t-test and ANCOVA test the same hypothesis and
estimate the same group differences.

• Still, ANCOVA provides more power and precision than ANOVA scores
(smaller error variance), as long as ANCOVA assumptions hold:

- Usual ANOVA assumptions (independence, normality, homoscedasticity).
- Linearity = Linear relation between pretest and posttest scores.
- Homogeneity of slopes = The linear relation is the same across groups.
- Covariate (i.e., pretest scores) measured without error (humm. . . ).
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Within-subjects design with k = 2 levels: Difference scores vs ANCOVA One-between, one-within

Pretest-posttest design – How to choose?

Is design experimental or quasi-experimental/ observational?

Quasi-experimental/ observational
• Non-randomized: Groups may display mean differences on pretest scores.

• In this case, ANCOVA’s adjusted means may differ from non-adjusted means.

• In this case, paired t-test and ANCOVA test different hypotheses.

• Furthermore, ANCOVA may be possibly invalid (natural groups).

- Groups may differ due to factors not considered in the experiment.
- Such differences might matter (i.e., removing them is a bad idea).
- Is group membership unrelated to pretest scores?

• Yes: ANCOVA is OK.
• No: ANCOVA is doubtful.

Results from paired t-test and ANCOVA differ (sometimes a lot!; Lord’s
paradox).
Paired t-test might be better if the adjusted means are unrealistic.
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Within-subjects design with k > 2 levels

Within-subjects design with k > 2 levels
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Within-subjects design with k > 2 levels

Within-subjects design with k > 2 levels

Poor models to use:

1 Separate ANOVAs for each time point.
• Allows studying between-subjects effect at each time point separately.
• Does not allow studying within-subjects effect.

2 Paired t-test for each pair of time points.
• k − 1 tests performed −→ chance capitalization
• Reduced power (also when controlling familywise error)
• More complex relations between time points ignored.

Viable model options:

1 RM-ANOVA or within-subjects ANOVA.

2 RM-MANOVA or ‘profile analysis’.

3 RM-Multilevel analysis.
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Within-subjects design with k > 2 levels RM-ANOVA (within-subjects ANOVA)

RM-ANOVA (within-subjects ANOVA)

Main idea
• Block on subjects: Subject as a random effects factor.

(‘random’ because subjects are a SRS from the population)

• Thus, remove within-subjects variability from error variance.

• RM-ANOVA is an instance of a mixed model.

Between-subjects ANOVA:

SST = SSBetween + SSWithin︸ ︷︷ ︸
Within-subjects ANOVA:

SST = SSBetween +
︷ ︸︸ ︷
SSSubjects + SSError
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Within-subjects design with k > 2 levels RM-ANOVA (within-subjects ANOVA)

RM-ANOVA (within-subjects ANOVA)

Assumptions:

• Independent observations (across subjects).

• Normality.

• Sphericity (for k > 2):
Variances for differences of y scores for any time point pairs are equal.
Mauchly’s test for sphericity, but it is poor:

- Hope not to reject H0 (lack of stat. sig. 6= H0 holds).
- Too sensitive to violations of normality.
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Within-subjects design with k > 2 levels RM-ANOVA (within-subjects ANOVA)

RM-ANOVA (within-subjects ANOVA)

Q: Sphericity violated, so what?
A: Test biased (inflated Type I error rate).

What to do?

- Simply ignore the unadjusted test (Maxwell & Delaney, p. 545).
Thus, ignore (please!) Mauchly’s test.

- Use epsilon-correction, from conservative to liberal:
• Lower-bound correction (overly conservative).
• Greenhouse-Geisser; preferable for small n.
• Huynh-Feldt.

For large n it matters little which correction to use (G-G ' H-F).

- Use other models:
• RM-MANOVA (profile analysis).
• RM-Multilevel analysis.
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Within-subjects design with k > 2 levels RM-MANOVA (profile analysis)

RM-MANOVA (profile analysis)

• RM-MANOVA = MANOVA of k − 1 transformed scores
(e.g., Y2 − Y1, . . . , Yk − Yk−1).

• This is the same idea as creating difference scores in the pretest-posttest
design.

• The omnibus multivariate F tests are invariant across sets of (linearly
independent) transformations.

• Assumptions: Those from MANOVA (multivariate normality, homogeneity of
variance-covariance matrix)
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Within-subjects design with k > 2 levels RM-MANOVA (profile analysis)

RM-ANOVA vs RM-MANOVA – How to choose?

‘Sphericity’ criterion
• If sphericity is violated (ε < .7) and sample size is ‘large’:

RM-MANOVA.

• If sphericity holds (ε > .7) or sample size is ‘small’:
RM-ANOVA.

What is ‘small’ or ‘large’? That is unfortunately debatable.
(see Algina & Keselman, 1997; Maxwell & Delaney, 2004; Keppel & Wickens, 2004).

’Type I error rate’ criterion

RM-ANOVA ≈ RM-MANOVA.

‘Constrasts’ criterion
RM-MANOVA preferred because it offers a consistent approach with the omnibus
test (Maxwell & Delaney, 2004, p. 672).
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Within-subjects design with k > 2 levels RM-Multilevel analysis (linear mixed model)

RM-Multilevel analysis (linear mixed model)

Repeated measurements (level 1) nested within subjects (level 2).

Very flexible:

• Different number of measurements across subjects.

• Measurements at different time points (unlike RM-(M)ANOVA).

• NAs allowed; much more flexible than e.g. RM-MANOVA (which requires
listwise deletion).

• More than two levels allowed (unlike RM-(M)ANOVA).

• Relations between groups and within groups modeled simultaneously.

• Predictors at each level allowed:

- Level 1: Time-dependent variables.
- Level 2: Individual characteristics.

• Cross-level interactions possible.
E.g.: Do patterns across time differ between genders?

• Regression models per subject.
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Within-subjects design with k > 2 levels RM-Multilevel analysis (linear mixed model)

RM-(M)ANOVA vs RM-Multilevel – How to choose?

• If sphericity is violated −→ Discard RM-ANOVA.
RM-Multilevel analysis models the var-cov matrix, much more flexible than
RM-ANOVA.

• Problems with NAs −→ Discard RM-MANOVA.

- Avoid ’saving the day’ by resorting to poor missing values tricks (like listwise
deletion or mean imputation; more below).

- RM-Multilevel very flexible (assumes MAR).

• Unequal time points across subjects −→ RM-Multilevel analysis.

• The data hierarchical structure involved more than 2 levels −→
RM-Multilevel analysis.

• Time-level covariates −→ RM-Multilevel analysis.

For completeness, also keep in mind that SEM and its latent growth curve model
is a viable option (no details today).
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Missing data (brief)

Missing data (brief)
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Missing data (brief)

Missing data – Mechanisms

Three common missing data mechanisms (Rubin, 1976):

• Missing completely at random (MCAR)

- NA unrelated to observed and missing data.

• Missing at random (MAR)

- NA unrelated to missing data, but related to observed data.
- Thus, nonresponse can be predicted by observed data.

• Missing not at random (MNAR)

- NA related to missing data.

These mechanisms are assumptions:

• Only MCAR can be empirically tested.
However, these tests are typically low powered (Baraldi & Enders, 2010).

• MAR and MNAR depend on the unobserved data, thus cannot be verified.
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Missing data (brief)

Missing data – Classical tecnniques

• Deletion: Listwise, pairwise.

3 Complete data sets (for listwise).
7 (Much) smaller N −→ low power.
7 MCAR assumed.

• Single imputation: Mean, regression, stochastic regression.

3 Complete data sets.
3 No reduction in N.
3 MAR assumed (regression, stochastic regression).
7 Correlations attenuated (mean) or overestimated (regression).
7 Variance attenuated (mean, regression).
7 MCAR assumed (mean).

Stochastic regression is the best of the above options. But:

7 SEs are too small (because uncertainty in the imputted missing data is
ignored in its computation), thus Type I error rates can be unnaceptably high.
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Missing data (brief)

Missing data – Modern tecnniques

• Maximum likelihood estimation (MLE).

• Multiple imputation (MI).

These techniques are preferable over traditional ones.

3 Unbiased under MCAR and MAR.

3 No reduction in N −→ larger power.

But:

7 MAR is untestable.

7 MI: It can be difficult to pool estimates together.

7 Based on assumptions (e.g., multivariate normality).
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