## **Experts Event**

Statistics – Examining changes

Jorge Tendeiro

11 April 2018



#### Overview

 $oldsymbol{0}$  Within-subjects design with k=2 levels: Difference scores vs ANCOVA One-within One-between, one-within

Within-subjects design with k > 2 levels RM-ANOVA (within-subjects ANOVA) RM-MANOVA (profile analysis) RM-Multilevel analysis (linear mixed model)

Missing data (brief)

# Within-subjects design with k = 2 levels: Difference scores vs ANCOVA

## Pretest-posttest design (one-within)

- Two repeated measures: Pretest and posttest (i.e., one within-subjects factor with k=2 levels).
- For now assume a one-group sample (i.e., no between-subjects factors).

| Pretest y <sub>0</sub> | Posttest y <sub>1</sub> |
|------------------------|-------------------------|
| $s_1$                  | $s_1$                   |
| <i>s</i> <sub>2</sub>  | <i>s</i> <sub>2</sub>   |
| • • •                  | • • •                   |
| S <sub>n</sub>         | S <sub>n</sub>          |

One-within

## Pretest-posttest design (one-within) – Possible analyses

- Paired t-test
  - This is equivalent to RM-ANOVA when k = 2.
  - Consider difference scores:  $d = y_1 y_0$ . Then paired *t*-test is equivalent to one-sample *t*-test on  $d_i$ .
  - In regression terms, this consists of fitting a model without predictors:

$$\underbrace{y_{1i} - y_{0i}}_{d_i} = \beta_0 + \varepsilon_i.$$

Paired *t*-test = *t*-test associated to  $\beta_0$ .

- ANCOVA
  - Regress posttest on pretest.

$$y_{1i} = \beta_0 + \beta_1 y_{0i} + \varepsilon_i$$

$$y_{1i} - \beta_1 y_{0i} = \beta_0 + \varepsilon_i.$$

$$d_i^*$$

ANCOVA test = t-test associated to  $\beta_0$ .

## Pretest-posttest design (one-within) - Comparison

| Test          | Model                                               | $H_0$                                 |
|---------------|-----------------------------------------------------|---------------------------------------|
| Paired t-test | $y_{1i} - y_{0i} = \beta_0 + \varepsilon_i$         | $\mu_{d} = \mu_{1} - \mu_{0} = 0$     |
| ANCOVA        | $y_{1i} - \beta_1 y_{0i} = \beta_0 + \varepsilon_i$ | $\mu_d^* = \mu_1 - \beta_1 \mu_0 = 0$ |

- Paired *t*-test is a constrained version of ANCOVA ( $\beta_1 = 1$ ).
- $\beta_1 = 1$  is a strong assumption in some cases.
- Thus, ANCOVA is more flexible:
   Smaller error variance, larger power.
- Price to pay for ANCOVA: Loss of 1df.

Observe that the paired t-test and ANCOVA test slightly different  $H_0$ s:

- Paired *t*-test: Population mean of difference scores is zero.
- ANCOVA: Population mean posttest score, adjusted for pretest scores, is zero.

## Pretest-posttest design (one-between, one-within)

One-between, one-within

- Two repeated measures: Pretest and posttest (i.e., one within-subjects factor with k = 2 levels).
- More than one group of subjects (i.e., one between-subjects factor with g levels).

This is a mixed between-within subjects design.

| Group | Pretest y <sub>0</sub> | Posttest y <sub>1</sub> |
|-------|------------------------|-------------------------|
| 1     | $s_1$                  | $s_1$                   |
|       | <i>s</i> <sub>2</sub>  | <i>s</i> <sub>2</sub>   |
|       |                        |                         |
|       | • • •                  | • • •                   |
| g     |                        | • • •                   |
|       | $s_{n-1}$              | $s_{n-1}$               |
|       | Sn                     | Sn                      |

## Pretest-posttest design (one-between, one-within) – Possible analyses

- Paired t-test
  - This is equivalent to RM ANOVA when k = 2, with one between-subjects factor.
  - Consider difference scores:  $d = y_1 y_0$ . Then paired *t*-test is equivalent to between-subjects ANOVA on  $d_i$ .
  - In regression terms:

$$\underbrace{y_{1i} - y_{0i}}_{d_i} = \beta_0 + \underbrace{\left(\beta_1 D_1 + \dots + \beta_{g-1} D_{g-1}\right)}_{\text{between-subjects factor}} + \varepsilon_i.$$

- ANCOVA
  - Regress posttest on pretest and covariates (dummy variables).

$$y_{1i} = \beta_0 + (\beta_1 D_1 + \dots + \beta_{g-1} D_{g-1}) + \beta_g y_{0i} + \varepsilon_i$$

$$\underbrace{y_{1i} - \beta_g y_{0i}}_{d_i^*} = \beta_0 + (\beta_1 D_1 + \dots + \beta_{g-1} D_{g-1}) + \varepsilon_i.$$

## Pretest-posttest design (one-between, one-within) – Comparison

Paired *t*-test 
$$y_{1i} - y_{0i} = \beta_0 + (\beta_1 D_1 + \dots + \beta_{g-1} D_{g-1}) + \varepsilon_i$$
  
ANCOVA  $y_{1i} - \beta_g y_{0i} = \beta_0 + (\beta_1 D_1 + \dots + \beta_{g-1} D_{g-1}) + \varepsilon_i$ 

- As before, the paired t-test is a constrained version of ANCOVA  $(\beta_g=1)$ .
- Price to pay for ANCOVA:
  - Loss of 1df.
  - The ANCOVA assumption of equality of regression slopes needs to be assessed when g>1.
    - (Look at size of interaction effect between both effects.)
- As before, paired t-test and ANCOVA test slightly different H<sub>0</sub>s (difference scores vs adjusted posttest scores).

## Pretest-posttest design – How to choose?

Is design experimental or quasi-experimental/ observational?

## Pretest-posttest design – How to choose?

Is design experimental or quasi-experimental/ observational?

#### Experimental

- Randomized groups imply no systematic initial differences between groups.
- Thus, pretest scores on average are equal across groups.
- ANCOVA adjusted means are basically equal to the unadjusted means.
- In this case, paired t-test and ANCOVA test the same hypothesis and estimate the same group differences.
- Still, ANCOVA provides more power and precision than ANOVA scores (smaller error variance), as long as ANCOVA assumptions hold:
  - Usual ANOVA assumptions (independence, normality, homoscedasticity).
  - Linearity = Linear relation between pretest and posttest scores.
  - Homogeneity of slopes = The linear relation is the same across groups.
  - Covariate (i.e., pretest scores) measured without error (humm...).

## Pretest-posttest design – How to choose?

Is design experimental or quasi-experimental/ observational?

### Quasi-experimental/ observational

- Non-randomized: Groups may display mean differences on pretest scores.
- In this case, ANCOVA's adjusted means may differ from non-adjusted means.
- In this case, paired *t*-test and ANCOVA test different hypotheses.
  - Furthermore, ANCOVA may be possibly invalid (natural groups).
    - Groups may differ due to factors not considered in the experiment.
    - Such differences might matter (i.e., removing them is a bad idea).
    - Is group membership unrelated to pretest scores?
      - Yes: ANCOVA is OK.
      - No: ANCOVA is doubtful.
         Results from paired t-test and ANCOVA differ (sometimes a lot!; Lord's paradox).
         Paired t-test might be better if the adjusted means are unrealistic.

Within-subjects design with k > 2 levels

Within-subjects design with k > 2 levels

## Within-subjects design with k > 2 levels

#### Poor models to use:

- Separate ANOVAs for each time point.
  - Allows studying between-subjects effect at each time point separately.
  - Does not allow studying within-subjects effect.
- 2 Paired t-test for each pair of time points.
  - k-1 tests performed  $\longrightarrow$  chance capitalization
  - Reduced power (also when controlling familywise error)
  - More complex relations between time points ignored.

#### Viable model options:

- RM-ANOVA or within-subjects ANOVA.
- RM-MANOVA or 'profile analysis'.
- 8 RM-Multilevel analysis.

## RM-ANOVA (within-subjects ANOVA)

#### Main idea

- Block on subjects: Subject as a random effects factor.
   ('random' because subjects are a SRS from the population)
- Thus, remove within-subjects variability from error variance.
- RM-ANOVA is an instance of a mixed model.

#### Between-subjects ANOVA:

$$SS_T = SS_{\text{Between}} + \underbrace{SS_{\text{Within}}}$$

#### Within-subjects ANOVA:

$$SS_T = SS_{\text{Between}} + \overline{SS_{\text{Subjects}}} + \overline{SS_{\text{Error}}}$$

## RM-ANOVA (within-subjects ANOVA)

#### Assumptions:

- Independent observations (across subjects).
- Normality.
- Sphericity (for *k* > 2):

Variances for differences of *y* scores for any time point pairs are equal. Mauchly's test for sphericity, but it is poor:

- Hope not to reject  $H_0$  (lack of stat. sig.  $\neq H_0$  holds).
- Too sensitive to violations of normality.

## RM-ANOVA (within-subjects ANOVA)

**Q:** Sphericity violated, so what?

**A:** Test biased (inflated Type I error rate).

#### What to do?

- Simply ignore the unadjusted test (Maxwell & Delaney, p. 545).
   Thus, ignore (please!) Mauchly's test.
- Use epsilon-correction, from conservative to liberal:
  - Lower-bound correction (overly conservative).
  - Greenhouse-Geisser; preferable for small *n*.
  - Huynh-Feldt.

For large n it matters little which correction to use (G-G  $\simeq$  H-F).

- Use other models:
  - RM-MANOVA (profile analysis).
  - RM-Multilevel analysis.

## RM-MANOVA (profile analysis)

- RM-MANOVA = MANOVA of k-1 transformed scores (e.g.,  $Y_2 Y_1, \ldots, Y_k Y_{k-1}$ ).
- This is the same idea as creating difference scores in the pretest-posttest design.
- The omnibus multivariate F tests are invariant across sets of (linearly independent) transformations.
- Assumptions: Those from MANOVA (multivariate normality, homogeneity of variance-covariance matrix)

### RM-ANOVA vs RM-MANOVA – How to choose?

#### 'Sphericity' criterion

- If sphericity is violated ( $\varepsilon$  < .7) and sample size is 'large': RM-MANOVA.
- If sphericity holds ( $\varepsilon > .7$ ) or sample size is 'small': RM-ANOVA.

What is 'small' or 'large'? That is unfortunately debatable. (see Algina & Keselman, 1997; Maxwell & Delaney, 2004; Keppel & Wickens, 2004).

### 'Type I error rate' criterion

RM-ANOVA  $\approx RM$ -MANOVA.

#### 'Constrasts' criterion

RM-MANOVA preferred because it offers a consistent approach with the omnibus test (Maxwell & Delaney, 2004, p. 672).

## RM-Multilevel analysis (linear mixed model)

Repeated measurements (level 1) nested within subjects (level 2).

#### Very flexible:

- Different number of measurements across subjects.
- Measurements at different time points (unlike RM-(M)ANOVA).
- NAs allowed; much more flexible than e.g. RM-MANOVA (which requires listwise deletion).
- More than two levels allowed (unlike RM-(M)ANOVA).
- Relations between groups and within groups modeled simultaneously.
- Predictors at each level allowed:
  - Level 1: Time-dependent variables.
  - Level 2: Individual characteristics.
- Cross-level interactions possible.
  - E.g.: Do patterns across time differ between genders?
- Regression models per subject.

## RM-(M)ANOVA vs RM-Multilevel – How to choose?

- If sphericity is violated → Discard RM-ANOVA.
   RM-Multilevel analysis models the var-cov matrix, much more flexible than RM-ANOVA.
- Problems with NAs → Discard RM-MANOVA.
  - Avoid 'saving the day' by resorting to poor missing values tricks (like listwise deletion or mean imputation; more below).
  - RM-Multilevel very flexible (assumes MAR).
- $\bullet \ \ \mbox{Unequal time points across subjects} \longrightarrow \mbox{RM-Multilevel analysis}.$
- $\bullet$  The data hierarchical structure involved more than 2 levels  $\longrightarrow$  RM-Multilevel analysis.
- Time-level covariates → RM-Multilevel analysis.

For completeness, also keep in mind that SEM and its latent growth curve model is a viable option (no details today).

## Missing data (brief)

## Missing data – Mechanisms

#### Three common missing data mechanisms (Rubin, 1976):

- Missing completely at random (MCAR)
  - NA unrelated to observed and missing data.
- Missing at random (MAR)
  - NA unrelated to missing data, but related to observed data.
  - Thus, nonresponse can be predicted by observed data.
- Missing not at random (MNAR)
  - NA related to missing data.

#### These mechanisms are assumptions:

- Only MCAR can be empirically tested.
   However, these tests are typically low powered (Baraldi & Enders, 2010).
- MAR and MNAR depend on the unobserved data, thus cannot be verified.

## Missing data – Classical techniques

- Deletion: Listwise, pairwise.
  - ✓ Complete data sets (for listwise).
  - $\mathsf{X}$  (Much) smaller  $\mathsf{N} \longrightarrow \mathsf{low}$  power.
  - MCAR assumed.
- Single imputation: Mean, regression, stochastic regression.
  - ✓ Complete data sets.
  - ✓ No reduction in N.
  - ✓ MAR assumed (regression, stochastic regression).
  - Correlations attenuated (mean) or overestimated (regression).
  - Variance attenuated (mean, regression).
  - MCAR assumed (mean).

#### Stochastic regression is the best of the above options. But:

SEs are too small (because uncertainty in the imputted missing data is ignored in its computation), thus Type I error rates can be unnaceptably high.

## Missing data - Modern tecnniques

- Maximum likelihood estimation (MLE).
- Multiple imputation (MI).

These techniques are preferable over traditional ones.

- ✓ Unbiased under MCAR and MAR.
- ✓ No reduction in  $N \longrightarrow larger$  power.

#### But:

- MAR is untestable.
- MI: It can be difficult to pool estimates together.
- X Based on assumptions (e.g., multivariate normality).