
IRT (GMMSGE01)
Polytomous IRT models

Jorge Tendeiro

21 December 2017

IRT (GMMSGE01) Polytomous IRT models 1/49



Literature

Presentation based on the book:

Ostini, R., & Nering, M. L. (2006). Polytomous item
response theory models. Sage University Paper Series
QASS.
(“Little green book”# 144)

I also used a classic book:

Embretson, S. E., & Reise, S. P. (2000). Item response
theory for psychologists. Chapter 5.

IRT (GMMSGE01) Polytomous IRT models 2/49



Overview

1 Introduction

2 (Some) Polytomous IRT models
Nominal response model (NRM)
Partial credit model (PCM)
Generalized partial credit model (GPCM)
Rating scale model (RSM)
Graded response model (GRM)

3 Model selection

4 Software

IRT (GMMSGE01) Polytomous IRT models 3/49



Introduction
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IRT (GMMSGE01) Polytomous IRT models 4/49



Introduction

Item response theory (IRT): Main idea

Modeling the relationship item↔person by means of a mathematical
function:

P(Xi = c|θ)︸ ︷︷ ︸
Pic(θ)

= f (θ)

X Xi = Item i with discrete response categories.

X c = Coded response category:
� If X is dichotomous, c = 0, 1;
� If X is polytomous, c = 0, 1, . . . ,m (m > 1).

X θ = Person trait parameter.

This is the item response function (IRF).
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Introduction

IRT: Important property

Item location (to be defined shortly) and person trait are indexed on the
same metric.
Example: Dichotomous item
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� θ > b −→ person is more likely to answer Xi = 1.
� θ < b −→ person is more likely to answer Xi = 0.
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Introduction

IRT: Dichotomous models recap.

� Dichotomous items:
Xi = 0 (incorrect, false) or Xi = 1 (correct, true).

� Most common models (logistic): 1PLM, 2PLM, 3PLM

� These models typically relate θ and Pi1(θ):

Pi1(θ) = f (θ).

[Pi0(θ) ≡ 1− Pi1(θ)].

We usually simplify notation in the dichotomous case:

Pi(θ) = Pi1(θ).
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Introduction

IRT: Dichotomous models recap.

1PLM

Pi(θ) =
1

1 + exp[−(θ − bi)]

� bi = difficulty param.
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Introduction

IRT: Dichotomous models recap.

2PLM

Pi(θ) =
1

1 + exp[−ai(θ − bi)]

� bi = difficulty param., ai = discrimination param.
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Introduction

IRT: Dichotomous models recap.

3PLM

Pi(θ) = ci + (1− ci)
1

1 + exp[−ai(θ − bi)]

� bi = difficulty param., ai = discrimination param., ci = guessing param.

−4 −3 −2 −1 0 1 2 3 4
θ (person ability)

0.00

0.25

0.50

0.75

1.00

P
(X

i =
 1

)

b1

a1= 1,    b1= −1,  c1= 0
a2= 2,    b2= 0.5, c2= 0.2
a3= 0.5, b3= 1.5, c3= 0.25

IRT (GMMSGE01) Polytomous IRT models 10/49



Introduction

IRT: Polytomous models

In this case Xi = 0, 1, . . . ,m, where m > 1.
Example of items with multiple response items:

� Rating scale
(e.g., Likert-type items: ‘Strongly disagree’, ..., ‘Strongly agree’).

� Ability test items awarding partial credit.

Now we need to define models which allow estimating each Pic(θ),
c = 0, 1, . . . ,m: 

Pi0(θ) = f1(θ)
· · ·

Pim(θ) = fm(θ)
.

These are the item category response functions (ICRFs).
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Introduction

IRT: Polytomous models – Why?

Polytomous items. . .

� are extensively used in applied psychological measurement.

� measure across a wider range of the trait continuum θ.

� are related to an increase of statistical information when
compared to dichotomous items.

� (in some settings) may help reducing test length
(time↘, costs↘, respondents’ motivation↗).
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(Some) Polytomous IRT models Nominal response model (NRM)

Nominal response model
(NRM)
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(Some) Polytomous IRT models Nominal response model (NRM)

NRM (Bock, 1972)

� Type of items: Polytomous with two or more nominal categories.

� Here, nominal categories = unordered in terms of the trait being
measured.

� E.g.: Multiple choice items (namely the distractors).

The NRM is a “divide-by-total”, or “direct” model:
The ICRFs are modeled directly.
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(Some) Polytomous IRT models Nominal response model (NRM)

NRM (Bock, 1972)

The ICRF for category c (c = 0, 1, . . . ,m) is

Pic(θ) =
exp(λicθ + ζic)∑m
h=0 exp(λihθ + ζih)

.

� λih = slope associated to category h of item i .

� ζih = intercept associated to category h of item i .

To identify the model (i.e., to estimate parameters), one of two
constraints is typically imposed:

�

∑m
h=0 λih =

∑m
h=0 ζih = 0, or

� λi0 = ζi0 = 0.
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(Some) Polytomous IRT models Nominal response model (NRM)

NRM (Bock, 1972): Example

Item measuring student mathematical achievement (N ' 2, 000).

Response options
A B C D

∑
λi −.30 .81 −.31 −.20 .000
ζi .21 .82 −.09 −.94 .000
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(Some) Polytomous IRT models Nominal response model (NRM)

NRM (Bock, 1972): Example

Interpretation:

� Response B is the most popular for the more able respondents.

� Response A is the most popular for the less able respondents
(followed by Response C).

� Response D was not popular across the entire trait scale.

In general, for the NRM:

� The popularity of response categories across the entire trait scale
is associated to the order of the intercepts ζic .

For the example, in increasing order of popularity:

Response D < Response C < Response A < Response B.
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(Some) Polytomous IRT models Partial credit model (PCM)

Partial credit model
(PCM)
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(Some) Polytomous IRT models Partial credit model (PCM)

PCM (Masters, 1982)

� Type of items: Polytomous with two or more ordinal categories.

� Ideal when the answer to an item consists of an ordered
sequence of steps.

� Partial credit can be given if the respondents only answered
correctly to the first (but not all) steps.

� Varying number of categories across items is possible.

� PCM = Applying the 1PLM to each pair of adjacent item
response categories.

� The PCM is an extension of the 1PLM.

The PCM is a “divide-by-total”, or “direct” model:
The ICRFs are modeled directly.
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(Some) Polytomous IRT models Partial credit model (PCM)

PCM (Masters, 1982)

The ICRF for category c (c = 0, 1, . . . ,m) is

Pic(θ) =
exp

[∑c
j=0(θ − δij)

]
∑m

h=0 exp
[∑h

j=0(θ − δij)
] .

� δij (j = 1, . . . ,m): Item step difficulties, also known as
� category boundaries;
� category intersections.

� Notation:
∑0

j=0(θ − δij) = 0.

Xi = 0 Xi = 1 Xi = 2 Xi = 3

δi1 δi2 δi3
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(Some) Polytomous IRT models Partial credit model (PCM)

PCM (Masters, 1982)

� δij = θ-value at which two consecutive ICRFs intersect:

Pi(j−1)(δij) = Pij(δij).

� The higher the δij , the more difficult a particular step is.

� The δij ’s aren’t necessarily ordered in the same sequence as the
categories (reversals; such a case indicates that the item is
probably not functioning as intended).

Special restriction of the PCM:
There must exist responses in every response category.
(Problematic for sparse data.)
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(Some) Polytomous IRT models Partial credit model (PCM)

PCM (Masters, 1982): Example

Item from a survey of morality (N ' 1, 000).
Five-point Likert-type rating scale.

Step Difficulties
δi1 δi2 δi3 δi4
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(Some) Polytomous IRT models Partial credit model (PCM)

PCM (Masters, 1982): Example

Interpretation:
� In this case the δij ’s are ordered, so adjacent ICRFs intersect at

locally optimal trait values.
� In particular, each answer option has the highest probability in

some subinterval of the θ-scale.
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(Some) Polytomous IRT models Partial credit model (PCM)

PCM (Masters, 1982): Example
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(Some) Polytomous IRT models Generalized partial credit model (GPCM)

Generalized partial credit model
(GPCM)
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(Some) Polytomous IRT models Generalized partial credit model (GPCM)

GPCM (Muraki, 1992)

� The GPCM is a generalization of the PCM.

� Idea: Add discrimination parameter (one per item).

� So, in a way, PCM→GPCM just like 1PLM→2PLM.

The GPCM is a “divide-by-total”, or “direct” model:
The ICRFs are modeled directly.
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(Some) Polytomous IRT models Generalized partial credit model (GPCM)

GPCM (Muraki, 1992)

The ICRF for category c (c = 0, 1, . . . ,m) is

Pic(θ) =
exp

[∑c
j=0 αi(θ − δij)

]
∑m

h=0 exp
[∑h

j=0 αi(θ − δij)
] .

� δij (j = 1, . . . ,m): Item step difficulties (category intersections).

� αi : Item discrimination (slope parameters).

� Notation:
∑0

j=0 αi(θ − δij) = 0.

Xi = 0 Xi = 1 Xi = 2 Xi = 3

δi1 δi2 δi3
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(Some) Polytomous IRT models Generalized partial credit model (GPCM)

GPCM (Muraki, 1992)

� δij = θ-value at which two consecutive ICRFs intersect.

� αi — Intuitive interpretation:
� Small values (say, ≤ 1) → ‘flatter’ ICRFs.
� Large values (say, ≥ 1.5) → more ‘peaked’ ICRFs.

In Muraki’s (1992, p. 162) words:

“[The αi ’s] indicate the degree to which categorical
responses vary among items as θ level changes.”
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(Some) Polytomous IRT models Generalized partial credit model (GPCM)

GPCM (Muraki, 1992): Example

� Items from the Neuroticism Extraversion Openness Five-Factor
Inventory (NEO-FFI; Costa & McCrae, 1992).

� Five-point Likert-type rating scale.
(0 = strongly disagree;. . . ; 4 = strongly agree.)

� N = 350.

Let’s see three items.

Response category
Item Content 0 1 2 3 4

5 Feels tense and jittery 17 111 97 101 24
6 Sometimes feels worthless 72 89 52 94 43
9 Feels discouraged, like giving up 27 128 66 95 34
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(Some) Polytomous IRT models Generalized partial credit model (GPCM)

GPCM (Muraki, 1992): Example (slope ' 1)

Item 6 ‘Sometimes feels worthless’.
(0 = 72, 1 = 89, 2 = 52, 3 = 94, 4 = 43).

Slope Step Difficulties
α6 δ61 δ62 δ63 δ64
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(Some) Polytomous IRT models Generalized partial credit model (GPCM)

GPCM (Muraki, 1992): Example (slope < 1)

Item 5 ‘Feels tense and jittery ’.
(0 = 17, 1 = 111, 2 = 97, 3 = 101, 4 = 24).

Slope Step Difficulties
α5 δ51 δ52 δ53 δ54

0.683 −3.513 −0.041 0.182 2.808
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(Some) Polytomous IRT models Generalized partial credit model (GPCM)

GPCM (Muraki, 1992): Example (slope ' 1.5)

Item 9 ‘Feels discouraged, like giving up’.
(0 = 27, 1 = 128, 2 = 66, 3 = 95, 4 = 34).

Slope Step Difficulties
α9 δ91 δ92 δ93 δ94

1.499 −1.997 0.210 0.103 1.627

−4 −3 −2 −1 0 1 2 3 4
θ (person ability)

0.0

0.2

0.4

0.6

0.8

1.0

P
9 

(X
 =

 c
)

δ91 δ92δ93 δ94

Category 0
Category 1
Category 2
Category 3
Category 4

IRT (GMMSGE01) Polytomous IRT models 31/49



(Some) Polytomous IRT models Rating scale model (RSM)

Rating scale model
(RSM)
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(Some) Polytomous IRT models Rating scale model (RSM)

RSM (Andrich, 1978)

� Type of items: Polytomous with two or more ordinal categories.

� Requirement: All items of the measurement instrument have the
same consistent structural response form.
E.g.: When the set of responses is the same for all items.

� As a consequence, the response format is intended to function in
the same way across all items.

� The RSM is an extension of the 1PLM.
Moreover, the RSM can be seen as a special case of the PCM.

The RSM is a “divide-by-total”, or “direct” model:
The ICRFs are modeled directly.
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(Some) Polytomous IRT models Rating scale model (RSM)

RSM (Andrich, 1978)

The ICRF for category c (c = 0, 1, . . . ,m) is

Pic(θ) =
exp

{∑c
j=0[θ − (λi + δj)]

}
∑m

h=0 exp
{∑h

j=0[θ − (λi + δj)]
} .

� λi : Item location parameter.
� δj (j = 1, . . . ,m): Category threshold parameters.
� Notation:

∑0
j=0[θ − (λi + δj)] = 0.

δ1
δ2

δ3

δ1
δ2

δ3

θ scaleλ1 λ2

Item 1 (4 cats.) Item 2 (4 cats.)
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(Some) Polytomous IRT models Rating scale model (RSM)

RSM (Andrich, 1978)

� Two consecutive categories intersect at θ = (λi + δj):

Pi(j−1)(λi + δj) = Pij(λi + δj).

� RSM is a special case of the PCM:
Corresponding (across items) category intersections are equally
spaced.
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(Some) Polytomous IRT models Rating scale model (RSM)

RSM (Andrich, 1978): Example (NEO-FFI)

Thresholds: δ1 = −1.600, δ2 = 0.224, δ3 = −0.184, δ4 = 1.560.
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Item 1: λ11 = 0.47 ('hardest' of the 12 items in the scale)
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(Some) Polytomous IRT models Graded response model (GRM)

Graded response model
(GRM)
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(Some) Polytomous IRT models Graded response model (GRM)

GRM (Samejima, 1969)

� Type of items: Polytomous with two or more ordinal categories.

� Varying number of categories across items is possible.

� GRM = Applying the 2PLM at each category boundary
(i.e., between two consecutive category responses).

� The GRM is an extension of the 2PLM.

The GRM is a “difference”, or “indirect” model:
The ICRFs are modeled indirectly.
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(Some) Polytomous IRT models Graded response model (GRM)

GRM (Samejima, 1969)

The ICRF for category c (c = 0, 1, . . . ,m) is

Pic(θ) = P∗ic(θ)− P∗i(c+1)(θ),

where

P∗ic︸︷︷︸
P(Xi≥c|θ)

=
1

1 + exp[−αi(θ − βic)]
(the 2PLM).

(And P∗
i0 ≡ 1, P∗

im ≡ 0.)

For example, if m = 4 (i.e., c = 0, 1, 2, 3):
Pi0(θ) = 1− P∗i1
Pi1(θ) = P∗i1 − P∗i2
Pi2(θ) = P∗i2 − P∗i3
Pi3(θ) = P∗i3 − 0.
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(Some) Polytomous IRT models Graded response model (GRM)

GRM (Samejima, 1969)

� αi : Item slope parameter (one per item).

� βic : Category threshold parameters
(one set {βi1, . . . , βim} per item).
These are the θ-values of transition between response categories.

� The βic ’s are necessarily ordered.

Xi = c − 1 Xi = c
Category responses

Category thresholds
(θ scale) P(Xi ≤ c) = .50 P(Xi ≥ c) = .50

βic
Category thresholds
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(Some) Polytomous IRT models Graded response model (GRM)

GRM (Samejima, 1969): Example (NEO-FFI)

Item 4 ‘Rarely feels lonely, blue’.
(0 = 20, 1 = 90, 2 = 68, 3 = 125, 4 = 47).

Slope Category thresholds
α4 β41 β42 β43 β44

1.31 −2.72 −0.81 0.04 1.85
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Model selection

Model selection
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Model selection

Model selection

� There are plenty of polytomous IRT models available
(models + variants > 10).

� Choosing one model may be a hard enterprise.

Criteria to help choosing the ‘best’ model:

1 Data characteristics

2 Measurement philosophy

3 Mathematical approaches to check fit
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Model selection

Model selection

1 Data characteristics
� Dichotomous vs polytomous item scores.
� Nominal vs ordinal categories.
� Number of response categories.
E.g.: The RSM requires the same number across items.

2 Measurement philosophy
� Does the model reflect the psychological reality that produced

the data?
E.g.: Can one conceptualize the answer to an item as being an
ordered sequence of subtasks for which awarding partial credit
to each is meaningful (i.e., PCM)?
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Model selection

Model selection

3 Mathematical approaches to check fit
� Check plots

↪→ Compare model-predicted vs empirical response functions.
↪→ Plot residuals.
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Model selection

Model selection

3 Mathematical approaches to check fit
� Statistical fit tests

These may vary depending on their level of generality.
(Assessing fit of all items, of a specific group of items, or of individual
items.)

↪→ Residual-based measures.
Based on differences between observed and expected item scores.

↪→ Multinomial distribution-based tests.
Based on differences between observed and expected frequencies
of response patterns.

↪→ Response function-based tests.
Based on differences between observed and expected
log-likelihood of response patterns.

↪→ Guttman error-based tests
Nonparametric approach based on the number of Guttman
errors.
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Model selection

Model selection

3 Mathematical approaches to check fit
� Goodness of fit

Consider model fit ⊕ number of estimated parameters.

↪→ Akaike’s information criterion (AIC; Akaike, 1977).
↪→ Procedures based on likelihood ratio of two comparing models.
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Model selection

Model selection

Some problems of statistical fit tests:

� The sampling distributions are often unknown.

� Some tests require very large sample sizes (on the hundreds),
specially for χ2-based tests.

� Unknown influence of using estimated parameters or of mild
model violations on the performance of the tests.

� Too large sample sizes invariably lead to rejections of the null
hypothesis (effect size?).

A final reassurence:
Some comparative studies of polytomous IRT models suggest that
results don’t vary much between models.
(E.g., Dodd, 1984; Maydeu-Olivares et al., 1994; Ostini, 2001; van Engelenburg,

1997; Verhelst et al., 1997.)
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Software

Software

� IRTPRO

� R: Several packages worth checking
(see http://cran.r-project.org/web/views/Psychometrics.html)

ltm, eRm, TAM, mcIRT, pcIRT,. . .
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