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Goals of today’s talk

Goals of today’s talk

Four main goals motivated the organization of this talk:

1. Provide insight into the generalization of univariate multiple regression
(UMR) to multivariate multiple regression (MMR).

We will see that the model formulation, parameter estimation, and inferential
procedures of MMR extend naturally from UMR.

2. Look into the most popular multivariate test statistics in use (Pillai’s trace V ,
Wilks’s Λ, Hotteling’s trace T , and Roy’s greatest characteristic root θ).

We will relate each of these multivariate test statistics to common tools and
concepts from UMR (namely, F tests, sr ’s, and pr ’s).

3. Present a multivariate version of R2 in MMR, here called R2
m.

This scalar R2 measure is not commonly used in MMR, but it is useful as a
summarized measure of “explained variance” across the set of all DVs.

4. (Briefly) Refer to MANOVA as a special case of MMR.
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Chapter 1: Review of univariate GLMs

Review of univariate GLMs

Multiple regression model:

Y = β0 + β1X1 + β2X2 + · · ·+ βqXq + ε

X1, . . . ,Xq: Predictors (continuous and/or categorical).

(β0), β1, . . . , βq: Regression coefficients.

Y : Dependent variable (only one in univariate MR).

ε: Error term.

Expressing the same model in matrix algebraic terms:

yn×1 = Xn×(q+1) β(q+1)×1 + εn×1

n: Sample size.

q: Number of predictors.
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Chapter 1: Review of univariate GLMs

Review of univariate GLMs

yn×1 = Xn×(q+1) β(q+1)×1 + εn×1


Y1

Y2

...
Yn


n×1

=


1 X11 X12 · · · X1q

1 X21 X22 · · · X2q

...
...

...
. . .

...
1 Xn1 Xn2 · · · Xnq


n×(q+1)︸ ︷︷ ︸

Design matrix


β0

β1

...
βq


(q+1)×1

+


ε1

ε2

...
εn


n×1

Four steps of GLM analysis:

1. Specify the model.

2. Estimate the model parameters.

3. Check goodness of fit of the model.

4. Test hypotheses about the model.
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Chapter 1: Review of univariate GLMs

Review of univariate GLMs

1. Specify the model.
Choose adequate predictors Xi (i = 1, 2, . . . , q) and DV Y
(choice is typically theory-driven, not statistics-driven).
Fill in yn×1 and the design matrix Xn×(q+1) correctly.
Coding categorical predictors required.

2. Estimate the model parameters.
The OLS solution consists of finding β that minimizes the sum of the
squared residuals:

n∑
i=1

ε2
i = (y − Xβ)′(y − Xβ) = ε′ε.

The solution is:
Unstandardized regression coefficients:

β̂(q+1)×1 = (X′X)−1X′y.

Standardized regression coefficients (‘beta’ coefficients):

β̂
∗
(q+1)×1 = (Z′XZX)−1Z′XZy = R−1

XXRXY .
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Chapter 1: Review of univariate GLMs

Review of univariate GLMs

3. Check goodness of fit of the model.

SSTotal = SSModel + SSError

n∑
i=1

(
Yi − Y

)2
=

n∑
i=1

(
Ŷi − Y

)2

+
n∑

i=1

(
Yi − Ŷi

)2

The most common measure of goodness of fit is

R2 =
SSModel

SSTotal

= 1− SSError

SSTotal

= β̂∗1 rY ·X1 + β̂∗2 rY ·X2 + · · ·+ β̂∗q rY ·Xq.
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Chapter 1: Review of univariate GLMs

Review of univariate GLMs

Other goodness of fit measures include the semipartial (sr) and partial (pr)
correlation coefficients.

sr and pr allow assessing the proportion of variance of Y that is uniquely
attributable to a (set of) predictor(s), after adjusting for all remaining
predictors.

Semipartial correlation = Correlation between Y and the part of the predictor
that is uncorrelated to all the remaining predictors.
Equivalently, it is the R2 increment achieved by adding the predictor to a
model that already includes the remaining (q − 1) predictors.
E.g.,

sr 2
1 = r 2(Y ,X1|X2 · · ·Xq).

= R2
Y ·X1···Xq

− R2
Y ·X2···Xq

= R2
full − R2

restricted.

Partial correlation = Correlation between the Y and a predictor, after the
remaining predictors have been partialled out from both. E.g.,

pr1 = r(Y |X2 · · ·Xq,X1|X2 · · ·Xq).
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Chapter 1: Review of univariate GLMs

Review of univariate GLMs

4. Test hypotheses about the model.
Under the usual regression assumptions (namely of normality) then:

F test associated to R2:

F =
SSModel/q

SSError/(n − q − 1)
=

MSModel

MSError
∼
H0

F (q, n − q − 1).

More generally, the F test associated to sr 2 (or β):

F =
(R2

full − R2
restricted)/(q − qr )

(1 − R2
full)/(n − q − 1)

∼
H0

F (q − qr , n − q − 1),

where qr = number of predictors in the restricted model.

Obs: Any test of interest in regression (i.e., any contrast) can be reexpressed
as an F test as shown above. So there is only one type of test, really.
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Chapter 1: Review of univariate GLMs

Review of univariate GLMs

In general, any contrast of interest under the GLM can be written as follows:

H0 : Lc×(q+1)β(q+1)×1 = 0c×1,

where c = number of contrasts to be tested and L is a matrix of contrast
coefficients.

Example:

H0 : β1 = · · · = βq = 0 becomes (c = q)

H0 : Lβ =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1



β0

β1

...
βq

 =


β1

β2

...
βq

 =


0
0
...
0


. . .
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Chapter 1: Review of univariate GLMs

Review of univariate GLMs

Example:

H0 : β1 = 0 becomes (c = 1)

H0 : Lβ =
[

0 1 0 · · · 0
]

β0

β1

...
βq

 = β1 = 0

H0 : β1 = β2 becomes (c = 1)

H0 : Lβ =
[

0 1 −1 · · · 0
]

β0

β1

...
βq

 = β1 − β2 = 0
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Chapter 1: Review of univariate GLMs

Review of univariate GLMs

In general:

Any hypothesis of the type

H0 : Lc×(q+1)β(q+1)×1 = 0c×1

can be tested by means of the F test

F =
(R2

full−R
2
restricted)/c

(1−R2
full)/(n−q−1)

=
SSHypothesis/c

SSError/(n−q−1) ∼H0

F (c, n − q − 1),

with R2
full and R2

restricted computed directly from X, β̂, and suitable L matrices.

. . .
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Chapter 2: Structure of multivariate GLMs

Structure of multivariate GLMs

Extend the previous results to cases with more than one DV.

Yn×p = Xn×(q+1) B(q+1)×p + En×p

n: Sample size.

q: Number of predictors.

p: Number of DVs.

The design matrix X is the same as before.
Y, B, and E were extended to accomodate p columns.
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Chapter 3: Estimating the parameters of the multivariate GLM

Estimating the parameters of the multivariate GLM

Yn×p = Xn×(q+1) B(q+1)×p + En×p

The OLS solution consists of finding B that minimizes the sum of the squared
residuals:

tr(E′E) = tr [(Y − XB)′(Y − XB)] .

The solution is:

Unstandardized regression coefficients:

B̂ = (X′X)−1X′Y.

Standardized regression coefficients (‘beta’ coefficients):

B̂∗ = (Z′XZX)−1Z′XZY = R−1
XXRXY .
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Chapter 4: Partitioning the SSCP, strength of association, test statistics

Partitioning the SSCP, strength of assoc., test statistics

Recall that for univariate GLMs,

ŷn×1 = Xn×(q+1) β̂(q+1)×1

with β̂ = (X′X)−1X′y.

The SS partitioning is given by

SSTotal = SSModel + SSError

n∑
i=1

(
Yi − Y

)2
=

n∑
i=1

(
Ŷi − Y

)2

+
n∑

i=1

(
Yi − Ŷi

)2

(y′y − ny′y) = (ŷ′y − ny′y) + (y′y − ŷ′y)

Multivariate GLMs generalize these formulas to accomodate multiple DVs (say, p).
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Chapter 4: Partitioning the SSCP, strength of association, test statistics

Partitioning the SSCP, strength of assoc., test statistics

For multivariate GLMs,

Ŷn×p = Xn×(q+1) B̂(q+1)×p

with B̂ = (X′X)−1X′Y.

The SSCP (matrices!) partitioning is given by

SSCPTotal = SSCPModel + SSCPError(
Y′Y − nY

′
Y
)

︸ ︷︷ ︸
p×p

=
(
Ŷ′Y − nY

′
Y
)

︸ ︷︷ ︸
p×p

+
(
Y′Y − Ŷ′Y

)
︸ ︷︷ ︸

p×p
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Chapter 4: Partitioning the SSCP, strength of association, test statistics

Partitioning the SSCP, strength of assoc., test statistics

Recall that the R2 measure of strength of association was, for univariate GLMs,
given by

R2 =
SSModel

SSTotal
= 1− SSError

SSTotal
.

The R2 of each DV in multivariate GLMs is readily available using the same
formula: (

R2
Y1
,R2

Y2
, . . . ,R2

Yp

)
=

Diag(SSCPModel)

Diag(SSCPTotal)
= 1− Diag(SSCPError)

Diag(SSCPTotal)

This is equivalent to running p separate univariate GLMs.

But we would like an overall, multivariate, measure of the strength of association
between Y and X across the p DVs. Only one value, not p separate R2 values. . .

Q: Is there such a measure?

A: Well, yes. . . The problem is that there are several.
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Chapter 4: Partitioning the SSCP, strength of association, test statistics

Partitioning the SSCP, strength of assoc., test statistics

One first attempt for a multivariate measure of strength of association:

R2
dYX =

R2
Y1

+ R2
Y2

+ · · ·+ R2
Yp

p
. . . .

Known as the redundancy index (Stewart & Love, 1968).

It estimates the proportion of joint, nonredundant, variance in {Y1, . . . ,Yp}
that is predictable from {X1, . . . ,Xq}.
Actually, it overestimates the proportion of joint variance in {Y1, . . . ,Yp}
that is predictable from {X1, . . . ,Xq} because it fails to adjust for
multicollinearity among the Yi variables. Not ideal.

Another problem:
The redundancy index is asymmetric: R2

dYX 6= R2
dXY unless p = q.

This is awkward.
(Think of overlapping areas in Venn diagrams.)
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Partitioning the SSCP, strength of assoc., test statistics

We want better measures of strength of association between Y and X, in
particular:

Adjusted for multicollinearity among the Yi variables.

Symmetric.

Motivation: Generalize the univariate idea of a sr 2,

sr 2 = R2
full − R2

restricted,

and its associated F test:

F =
SSHypothesis/(q − qr )

SSError/(n − q − 1)
∼
H0

F (q − qr , n − q − 1).

Recall univariate

Workshop Multivariate General Linear Models, (# 170, Richard F. Haase) 24/44



Chapter 4: Partitioning the SSCP, strength of association, test statistics

Partitioning the SSCP, strength of assoc., test statistics

We want better measures of strength of association between Y and X, in
particular:

Adjusted for multicollinearity among the Yi variables.

Symmetric.

Motivation: Generalize the univariate idea of a sr 2,

sr 2 = R2
full − R2

restricted,

and its associated F test:

F =
SSHypothesis/(q − qr )

SSError/(n − q − 1)
∼
H0

F (q − qr , n − q − 1).

Recall univariate

Workshop Multivariate General Linear Models, (# 170, Richard F. Haase) 24/44



Chapter 4: Partitioning the SSCP, strength of association, test statistics

Partitioning the SSCP, strength of assoc., test statistics

For full model (i.e., based on all q predictors X1, . . . ,Xq):

Y = XB + E

SSCPTotal︸ ︷︷ ︸
QT

= SSCPFull︸ ︷︷ ︸
QF

+ SSCPError︸ ︷︷ ︸
QE

For reduced model (i.e., based on only a subset of predictors):

Y = XRBR + E′

SSCPTotal︸ ︷︷ ︸
QT

= SSCPRestricted︸ ︷︷ ︸
QR

+ SSCPError︸ ︷︷ ︸
QE′

Thus, focus on the hypothesis SSCP matrix:

QH = QF −QR .

QH = Incremental influence of the variables in the full model that are not in the
restricted model.
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Partitioning the SSCP, strength of assoc., test statistics

Y Y2

Y1 Y2

X1 X2

“R2”=
QF

QT
=

QF

QF + QE

. . .
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Partitioning the SSCP, strength of assoc., test statistics

Y Y2

Y1 Y2

X1 X2

“sr 2
1 ”=

QH

QT
=

QH

QF + QE
,

where QH represents the unique contribution of X1 to explaining the total variance
in Y.
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Partitioning the SSCP, strength of assoc., test statistics

Y Y2

Y1 Y2

X1 X2

“pr 2
1 ”=

QH

QH + QE
,

where QH represents the unique contribution of X1 to explaining the variance in Y
not explained by X2. . . .
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Partitioning the SSCP, strength of assoc., test statistics

A second attempt for a multivariate measure of strength of association:
Hooper’s squared trace correlation. From

“R2”=
QF

QT

Recall Venn’s diagram

one derives
“R2”= Q−1

T QF ,

which is still a (p × p) matrix.

Hooper (1959) suggested the following (scalar) formula:

r 2 = 1
p tr
(
Q−1

T QF

)
= 1

p tr
(
R−1

YYRYXR
−1
XXRXY

)
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Partitioning the SSCP, strength of assoc., test statistics

About r 2:

X Unlike R2
dYX

Recall , r 2 does adjust for multicollinearity among the Y s and
among the X s.

X r 2 reduces to the common R2 measure in simple (p = q = 1) and multiple
(p = 1, q > 1) linear regression.

X Straightforward interpretation:

r 2 is the proportion of the joint, nonredundant variance in
{Y1, . . . ,Yp} that is explained by the joint, nonredundant variance in
{X1, . . . ,Xq}.

7 Unfortunately, r 2 is still asymmetric.

We are finally led to present the “big four” R2-like measures of wide use nowadays,
all of which are symmetric and adjusted for multicollinearity among the Y s:

Pillai’s trace V .

Wilks’ Λ.

Lawley-Hotteling’s trace T .

Roy’s GCR θ.
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Partitioning the SSCP, strength of assoc., test statistics

Test Multivariate R2
m Univ. R2 Multiv.

statistic test conceptual F -test
statistic equivalent equivalent

Pillai’s V V = tr
[
(QH + QE )−1 QH

]
R2
V = V

s pr2 Venn diag. (∗)
(=R2 if QF = QH )

Wilks’ Λ Λ =
|QE |
|QH+QE |

R2
Λ = 1− Λ

1
s 1− pr2 (∗)

(=1− R2 if QF = QH )

Hotelling’s T T = tr
(
Q−1

E QH

)
R2
T = T

T+s
pr2

1−pr2 (∗)

(= R2

1−R2 if QF = QH )

Roy’s θ θ = maxeigen

(
Q−1

E QH

)
R2
θ = θ

1+θ r2 (∗)
s = min(p, qh).
ρ2

max = maximum squared canonical correlation between X and Y.

(∗) = These F test are all similar to each other, and all are approximations of the
exact tests based on V , Λ, T , and θ. . . .
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Partitioning the SSCP, strength of assoc., test statistics

Example — Personality and success in job application process
Based on Caldwell and Burger (1998).

Predictors
Neurot Neuroticism
Extrav Extraversion
Consci Conscientiousness

Outcomes
BackPrep Background preparation for the interviews
SociPrep Social preparation for the interviews
FollowUp Number of follow-up interviews achieved
Offers Number of offers of employment received

Original data based on an observational study of 99 college students.

I generated synthetic data based on the original means, SDs, and correlations
for the seven variables above.
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Partitioning the SSCP, strength of assoc., test statistics

Multivariate tests
Test Test Stat. R2

m Approx. F Num Df Den Df p-value

Pillai’s V 0.470 V
s

= .156 4.361 12 282 <.001

Wilks’ Λ 0.579 1 − Λ
1
s = .166 4.658 12 243.701 <.001

Hotteling’s T 0.645 T
T+s

= .177 4.872 12 272 <.001

Roy’s θ 0.489 θ
1+θ

= .328 11.492 4 94 <.001

In this example, s = min(p, qh) = min(4, 3) = 3.

Obs.: R2
m values are typically not given by statistical software, so manual

computation might be needed.
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Partitioning the SSCP, strength of assoc., test statistics

Some notes:

The interpretation of R2
m for V , Λ, and T is more or less the same, namely:

“About (100× R2
m)% of the joint, nonredundant, variance of the

DVs is accounted for by the joint variance of the predictors.”

The interpretation of R2
θ is along the lines of canonical correlation:

“(100× R2
θ )% is the percentage of the joint variance in common

between the set of predictors and the set of DVs.”

Unfortunately, the four multivariate tests do not necessarily lead to the same
proportions R2

m and corresponding F tests (see, e.g., Olson, 1974, 1976).

Very often, (R2
V ' R2

Λ ' R2
T ) < R2

θ .

In cases where R2
θ � {R2

V ,R
2
Λ,R

2
T}:

Be careful not to put too much trust on R2
θ .
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Partitioning the SSCP, strength of assoc., test statistics

Both SPSS and R do not give the omnibus (approximate) F test results. One
needs to explicitly ask for these:

In SPSS. . .
GLM BackPrep SociPrep FollowUp Offers WITH Neurot Extrav Consci

/LMATRIX Neurot 1; Extrav 1; Consci 1.

(see output table Multivariate Test Results)

In R. . .
library(car)

# Below, the data frame is called 'Data.CB'.
res.CB <- lm(cbind(BackPrep, SociPrep, FollowUp, Offers) ~

Neurot + Extrav + Consci, Data.CB)

L <- cbind(0, diag(3))

TestStats.CB <- linearHypothesis(res.CB, L)

(see output table Multivariate Tests)

Recall omnibus contrast

Workshop Multivariate General Linear Models, (# 170, Richard F. Haase) 35/44



Chapter 5: Testing hypotheses in the multivariate GLM

Overview

1 Goals of today’s talk

2 Chapter 1: Review of univariate GLMs

3 Chapter 2: Structure of multivariate GLMs

4 Chapter 3: Estimating the parameters of the multivariate GLM

5 Chapter 4: Partitioning the SSCP, strength of association, test statistics

6 Chapter 5: Testing hypotheses in the multivariate GLM

7 Chapter 6: Coding the design matrix and MANOVA

8 Conclusion

Workshop Multivariate General Linear Models, (# 170, Richard F. Haase) 36/44



Chapter 5: Testing hypotheses in the multivariate GLM

Testing hypotheses in the multivariate GLM

All (approximate!) multivariate F -tests have the same form, which is an extension
from the common univariate F test for pr 2:

F =
R2

hypothesis/dfh

(1− R2
hypothesis)/dfe

∼
H0

F (q − qr , n − q − 1).

The approximate multivariate F -tests ((∗) in Recall multivariate tests ) are a test of the
partial R2

m:

F =
R2
m/vh

(1− R2
m)/ve

∼
H0

F (vh, ve),

with vh, ve specific to each test statistic (Pillai, Wilks, etc.).
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Chapter 5: Testing hypotheses in the multivariate GLM

Testing hypotheses in the multivariate GLM

Some notes:

The approximate multivariate F test is actually exact when p or q equals 1
or 2.

The approximate multivariate F test for Roy’s θ is too liberal, i.e., it
overrejects H0 (inflated Type I error rates). Be aware.
Exact test is preferred (but not often provided by software).

It is straightforward to adapt these approximate multivariate F tests to test
any contrast of interest, similarly to what we saw for univariate models:

H0 : Lc×(q+1)B(q+1)×p = 0c×p

with
QH = (LB̂)′

(
L(X′X)−1L′

)−1
(LB̂).
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Testing hypotheses in the multivariate GLM

For the running example (personality and success in job application process):

H0 : There is no overall effect of the three personality dimensions on the DVs
(i.e., the omnibus test discussed before).

L =

 0 1 0 0
0 0 1 0
0 0 0 1


In R:

L <- cbind(0, diag(3))

linearHypothesis(res.CB, L)

H0 : Extraversion (2nd predictor) has no effect.

L =
[

0 0 1 0
]
,

so H0 : BExtr. on the 4 DVs = (0, 0, 0, 0).
In R:

L <- c(0, 0, 1, 0)

linearHypothesis(res.CB, L)

. . .
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Testing hypotheses in the multivariate GLM

Typically, successful results from omnibus multivariate tests are followed by
GLM tests on (sets of) individual predictors.

However, it is still unclear how the (possibly) correlated DVs contribute to
the multivariate effects of individual predictors.

It is common practice to fit and interpret the p univariate regression models
in order to better understand how the multivariate effects of individual
predictors are being processed.
(In a way, it’s back to square one!)

The p univariate follow-up tests are based on DVs which are not adjusted for
their mutual correlations. This may lead to univariate follow-up tests
overestimating the contribution of single DVs to the multivariate relationship.

The Roy-Bargman stepdown tests are one way to solve this issue related to
correlated DVs.
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Chapter 6: Coding the design matrix and MANOVA

Coding the design matrix and MANOVA

MANOVA is just MMR in which the design matrix X is based on code
variables.

So, all the previous discussion applies straightforwardly to MANOVA!

Yn×p = Xn×(q+1) B(q+1)×p + En×p

We only need to know how to code factors into X.
There are many coding systems available:
Reference (dummy) coding, unweighted effects coding, weighted effects
coding, contrast coding, cell mean coding, . . .

Different coding systems lead to different regression coefficients B.

The multivariate test of contrasts (e.g., omnibus test, test for individual
predictors, . . . ) is performed as before:

H0 : Lc×(q+1)B(q+1)×p = 0c×p,

where the specific form of L will depend on B (i.e., on the coding system of
choice).
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Conclusion

Conclusion

MMR is, conceptually, a straighforward extension of UMR.

The four popular multivariate test statistics (Pillai’s trace, Wilks’ Λ,
Hotteling’s T , and Roy’s GCR) are based on concepts from UMR (namely, F
tests based on pr ’s).

Q: Which test statistic is the best?
A: There is no ‘best’.

Pillai’s V is robust to violations of homogeneity of covariance matrix
(Olson, 1976), being therefore recommended by some researchers (e.g.,
Hand & Taylor, 1987).
Roy’s GCR θ works well when the DVs are not too strongly correlated
(such that the first eigenvalue of Q−1

E QH doesn’t dominate).
Results based onV , Λ, and T are often close.

Scalar multivariate R2s exist which can be computed and reported.

MANOVA directly benefits from these insights.
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