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Literature

Presentation based on the book:
Andersen, R. (2008). Modern methods for robust
regression. Sage University Paper Series QASS.
(“Little green book” # 152)

(Nearly) all R code that I used comes with the book and was
downloaded from Sage.
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Introduction

“Modern” regression
• (OLS — Ordinary Least Squares) regression:

One of the most widely used statistical methods in social
sciences.

• However, we will see that OLS regression does have limitations.

• “Modern” regression methods can be seen as improvements/
alternatives to the usual regression model.

• Robust regression is one such “modern” method.
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Introduction

Robust regression

The term robust has multiple interpretations in estimation
frameworks:

• Robustness of validity: Resistance of the estimator to unusual
observations.
A robust estimator should not suffer big changes when small changes are
made to the data.

• Robustness of efficiency: Resistance of the estimator to
violations of underlying distributional assumptions.
A robust estimator should keep high precision (i.e., small SEs) when
distributional assumptions are violated.

We will mostly focus on robustness of validity in regression.
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Introduction

Limitations of OLS regression: Example
�
�

�
�

Jasso, G. (1985). Marital coital frequency and the passage of time: Estimating
the separate effects of spouses’ ages and marital duration, birth and marriage
cohorts, and period influences. American Sociological Review, 50(2), 224-41.
doi:10.2307/2095411

• Jasso (1985) found that wife’s age had a positive effect on the
monthly coital frequency of married couples, after controlling for
period and cohort effects.

• Kahn and Udry (1986) questioned her findings:
• They found four ‘miscodes’ in the dataset.
• They found four additional outliers using model diagnostics.
• They claim Jasso failed to consider a relevant interaction effect

(length of marriage by wife’s age): Model misspecification.

Total sample size: 2062.
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Introduction

Limitations of OLS regression: Example

Model 1 Model 2

Period −0.72∗∗∗ −0.67∗∗∗
Log Wife’s Age 27.61∗∗ 13.56
Log Husband’s Age −6.43 7.87
Log Marital Duration −1.50∗∗∗ −1.56∗∗∗
Wife Pregnant −3.71∗∗∗ −3.74∗∗∗
Child Under 6 −0.56∗∗ −0.68∗∗∗
Wife Employed 0.37 0.23
Husband Employed −1.28∗∗ −1.10∗∗

R2 .0475 .0612
n 2062 2054

Note. ∗p < .10, ∗∗p < .05, ∗∗∗p < .01.

Model 1: Jasso’s (1985) original model.
Model 2: Kahn and Udry’s (1986) model excluding 4 miscodes and 4
outliers.

ICPE research meeting Modern methods for robust regression 8/39



Introduction

Limitations of OLS regression: Example

Some conclusions:

• A small number of unusual observations can have a large effect
on the estimated regression coefficients.

• Large samples are not immune to this problem.
(Previous example: 8/2062 = 0.39% of data.)

• Using diagnostic tools to uncover potential problems is a crucial
(and often disregarded) analysis step.

• The decision on what to do when influential observations are
found should be based on substantive knowledge
(i.e., no one-way-out solution exists).
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Important background

Important background
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Important background

Properties of estimators

Assessing whether an estimator is robust requires checking several
mathematical properties.

Notation:
θ population parameter that we intend to estimate

T estimator for θ
Y sample (Y = (y1, . . . , yn))

θ̂ estimate of θ (T (Y ) = θ̂)

n sample size
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Important background

Properties of estimators
1 Bias: Does the estimator give, on average, the desired

parameter?
bias = E [θ̂ − θ]

2 Consistency: Does the estimator converge to the parameter as
n→∞?

lim
n→∞

MSE (θ̂) = lim
n→∞

E [(θ̂ − θ)2] = 0

3 Breakdown point: Global measure of the resistance of an
estimator

BDP(T ,Y ) = min
{

m
n : sup

Y ′m
‖T (Y ′m)− T (Y )‖ is infinite

}
,

where Y ′m is any sample derived from Y by replacing m of its n
observations with arbitrary values.
0 ≤ BDP ≤ .50, the larger the better.
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Important background

Properties of estimators

4 Influence function (IF): Local measure of the resistance of an
estimator.
Ideal: Having a bounded influence function, implying that one
single observation has limited influence on the estimator.

5 Relative efficiency: Ratio of MSE ’s of the estimator with
smallest MSE (say TOpt) and estimator T

Relative efficiency =
MSE (TOpt)

MSE (T )

0 ≤ Rel. Effic. ≤ 1, the larger the better.
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Important background

Measures of location

Measure of location: Quantity that characterizes a position in a
distribution

Statistic Formula BDP IF In current use in
robust regression

Mean y =

∑
i

yi
n 0 Unbounded No

α-trimmed mean y t =
y(g+1)+···+y(n−g)

n−2g α Bounded Yes

Median M = Q.50 .50 Bounded Yes
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Important background

Measures of scale

Measure of scale: Quantity that characterizes a spread of a
distribution

Statistic Formula BDP IF In current use in
robust regression

Standard deviation sy =

√∑
i
(yi−y)2

n−1 0 Unbounded No

Mean deviation
MD =

∑
i
|yi−y|
n

0 Unbounded Nofrom the mean

Mean deviation
MDM =

∑
i
|yi−M|
n

0 Unbounded Nofrom the median

Interquartile range IQR = Q.75 − Q.25 .25 Bounded Not so often

Median absolute MAD = median|yi −M| .50 Bounded Yesdeviation
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Robustness, resistance, and OLS regression

Robustness, resistance,
and OLS regression
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Robustness, resistance, and OLS regression

Classification of ‘unusual’ observations

Observation Definition Does it affect
regression estimates?

Univariate outlier Outlier of x or y Not necessarily(unconditional on each other)

Regression outlier Unusual y value for a given x Not necessarily (A)

Observation with leverage Unusual x value Not necessarily (B)

Observation with influence Regression estimates change Yes (C)greatly with/without them

−→
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Robustness, resistance, and OLS regression

Classification of ‘unusual’ observations

Conclusion:
• Being x -discrepant (leverage) or y -discrepant (regression outlier)

is not sufficient to identify influential observations.

• However, it is a combination of both x - and y - discrepancies
that determines the influence of an observation.

Important note:
Observations with high leverages that follow the main regression
trend help decreasing the SE of the estimates! Plot B

SE (b) =
se√∑

i(xi − x̄)2

How do we identify regression outliers, observations with leverage,
and observations with influence?
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Robustness, resistance, and OLS regression

Identifying ‘unusual’ observations

n = number of observations (i = 1, . . . , n)
k = number of predictors (j = 1, . . . , k)

Detecting. . . Use. . . Rule of thumb? Test? Plot?Flag if. . .

Leverage Hat values hi > 2(k + 1)/n a — Index plot

Regression outliers Studentized residuals | · | ≥ 2 Yesb QQ-plot

Influence
DFBETAs | · | ≥ 2/

√
n — Index plot

Cook’s D > .5 c
— Index plot

> 4/(n − k − 1) d

a. For large samples. Use hi > 3(k + 1)/n for small samples.
b. Controlling for capitalization by chance is required.
c. According to Cook and Weisberg (1999).
d. According to Fox (1997).
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Robustness, resistance, and OLS regression

Identifying ‘unusual’ observations: Example −→

�
�

�


Weakliem, D.L., Andersen, R., & Heath, A.F. (2005). By popular demand:
The effect of public opinion on income quality. Comparative Sociology, 4(3),
261-284. doi:10.1163/156913305775010124

We will focus on a subset of the original data:
• Sample: n = 26 countries with democracies < 10 years.
• Dependent variable:

• Secpay: Mean country score on public opinion about pay
inequality
(between 0 and 1; large values reflect opinions favoring equality).

• Predictors:
• Gini: Income inequality

(between 0 = ‘perfect equality’ and 1 = ‘perfect inequality’).
• GDP: Per capita gross domestic product (scaled).
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Robustness, resistance, and OLS regression

Identifying ‘unusual’ observations: Example

Goal: Estimate the model

Ŝecpay = B0 + B1Gini + B2GDP

Are there influential points?

First: Looking for univariate outliers:

Next: Looking for leverage, regression outliers, and influence.
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Ŝecpay = B0 + B1Gini + B2GDP

Are there influential points?
First: Looking for univariate outliers:

Next: Looking for leverage, regression outliers, and influence.

ICPE research meeting Modern methods for robust regression 21/39



Robustness, resistance, and OLS regression

Identifying ‘unusual’ observations: Example

Goal: Estimate the model
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Robustness, resistance, and OLS regression
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Robustness, resistance, and OLS regression
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Robustness, resistance, and OLS regression

Identifying ‘unusual’ observations: Example
Conclusion:

• Slovakia and Czech Republic seem to have a large influence on
the estimation of the regression coefficients.

• This can be confirmed:
OLS OLS

(all countries) (omitting cz and sk)
b SE b SE

Intercept .028 .128 −.107* .058
Gini .00074 .0028 .00527*** .0013
GDP .0175** .0079 .0063 .0037

s .138 .0602
R2 .175 .4622
n 26 24

Note. ∗p < .10, ∗∗p < .05, ∗∗∗p < .01.�� ��Let’s now look into better alternatives to OLS!
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Robust regression for the linear model

Robust regression for the
linear model
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Robust regression for the linear model

Various robust regression models

Type Estimator Breakdown Bounded Asymptotic
Point Infl. Func. Efficiency

— OLS 0 No 100%

L-Estimators
LAV (Least Absolute Values) 0 Yes 64%
LMS (Least Median of Squares) .5 Yes 37%
LTS (Least Trimmed Squares) .5 Yes 8%

R-Estimators Bounded influence estimator < .2 Yes 90%

M-Estimators
M-estimates (Huber, biweight) 0 No 95%
GM-estimates (Mal.& Schw.) 1/(p + 1) Yes 95%
GM-estimates (S1S) .5 Yes 95%

S-Estimators S-estimates .5 Yes 33%
GS-estimates .5 Yes 67%

MM-Estimators MM-estimates .5 Yes 95%
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Robust regression for the linear model

Example: Simulated data
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Robust regression for the linear model

Example: Public opinion about pay inequality ←−

Ŝecpay = B0 + B1Gini + B2GDP

OLS OLS L-Est. M-Est. M-Est. MM-Est.(all) (cz, sk) (LAV) (Huber) (Biweight)

Intercept .0283 −.1069 −.0791 −.0632 −.0905 −.0978
Gini .0007 .0053 .0045 .0039 .0049 .0051
GDP .0175 .0063 .0059 .0089 .0052 .0057

• All robust regression methods give similar results.
• Once more, OLS with outliers removed gives similar results to

robust regression models.
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Robust regression for the linear model

Using robust regression as regression diagnostics

Common statistics measuring influence of observations (e.g., Cook’s
distance) are not robust against unusual obervations.

Q: Why?
A: Because they rely on sample mean and (co)variances, which are
not robust themselves.

In particular, Cook’s D suffers from a masking effect:
A masking effect occurs when groups of influential
observations mask the influence of each other.
(Rousseeuw & van Zomeren, 1990)

Robust regression can be used instead.
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Robust regression for the linear model

Using robust regression as regression diagnostics

Example: Index plots of robust regression weights wi

Idea: Weights indicate levels of ‘unusualness’ (y - and/or x -
discrepancies) — the smaller, the more unusual.
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Robust regression for the linear model

Using robust regression as regression diagnostics

Example: RR-plots (Tukey, 1991)

Idea: Robust regression residuals are better than OLS residuals for
diagnosing outliers:

OLS regression tries to produce normal-looking residuals
even when the data themselves are not normal.
(Rousseeuw & van Zomeren, 1990)

RR-plots: Residual-residual scatterplot matrix
• OLS assumptions hold =⇒ scatter around y = x line

(OLS vs robust regression residuals)
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Robust regression for the linear model

Using robust regression as regression diagnostics
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Standard errors for robust regression

Standard errors for
robust regression
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Standard errors for robust regression

Standard errors for robust regression
• Analytical (asymptotic) SEs are available for only some types of

robust regression:
X M- and GM-estimation.
X S- and GS-estimation.
X MM-estimation.

These estimates are given by

SE
θ̂

=
√

Diagonalvar-cov matrix.

• Some problems with SE
θ̂
:

• Unreliable for small n (say, < 40).
• Reliability decreases as proportion of influential observation

increases.

Alternative: Bootstrapping
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Standard errors for robust regression

Computing standard errors: Bootstrapping

Bootstrapping is useful to estimate difficult/unknown sampling
distributions.

Remember: If OLS assumptions are met, then OLS estimates for the
SEs are better than bootstrap estimates!

There are two bootstrapping options in robust regression:

• Random-x bootstrapping
• Resample from data.

• Fixed-x bootstrapping
• Resample from residuals.
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Standard errors for robust regression

Example: Public opinion about pay inequality

Regression OLS OLS L-Est. M-Est. M-Est. MM-Est.Coeffs. (all) (cz, sk) (LAV) (Huber) (Biweight)

Intercept .0283 −.1069 −.0791 −.0632 −.0905 −.0978
Gini .0007 .0053 .0045 .0039 .0049 .0051
GDP .0175 .0063 .0059 .0089 .0052 .0057

SEs OLS OLS L-Est. M-Est. M-Est. MM-Est.(all) (cz, sk) (LAV) (Huber) (Biweight)

Intercept .1278 .0578 .0760 .0754 .0658 .0580
Gini .0028 .0013 .0017 .0017 .0014 .0012
GDP .0080 .0037 .0046 .0047 .0041 .0035
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Standard errors for robust regression

Computing bootstrapping CIs
• Having estimated regression coefficients plus their associated

(bootstrapped) SEs, it is now possible to compute (1− α)% CI.

• There are some possibilities:
X Bootstrap t CI: When bias is small and the bootstrap sampling

distribution is roughly normally distributed.

CI = β̂ ± tn−k−1,α/2SE (β̂)

X Bootstrap percentile CI: When bias is small but the bootstrap
sampling distribution deviates from the normal distribution.

CI = (qα/2(β∗), q1−α/2(β∗)), β∗ = bootstrapped dist.

X Bias-corrected percentile CI: When bias is large (e.g., for small
sample sizes).
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Standard errors for robust regression

Example: Public opinion about pay inequality

Bootstrap t CIs

B Boot. SE Lower 95% Upper 95%

Intercept −.0978 .0580
Gini .0051 .0012 .0026 .0076
GDP .0057 .0033 −.0015 .0129
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Robust regression in R

Robust regression in R
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Robust regression in R

Robust regression in R

Fitting regression models

Reg. Model R package R command

OLS — lm(SECPAY ∼ gini + GDP)
L-Estimation (LAV) quantreg rq(SECPAY ∼ gini + GDP)
M-Estimation (Huber) MASS rlm(SECPAY ∼ gini + GDP)
M-Estimation (Biweight) MASS rlm(SECPAY ∼ gini + GDP,psi=psi.bisquare)
MM-Estimation MASS rlm(SECPAY ∼ gini + GDP,method="MM")

Model diagnostics (stats package, loaded by default)

Statistic Diagnosing. . . R command

Hat values Leverage hatvalues(lm(SECPAY ∼ gini + GDP))
Studentized residual Reg. outlier rstudent(lm(SECPAY ∼ gini + GDP))
DFBETA Influence dfbeta(lm(SECPAY ∼ gini + GDP))
Cook’s D Influence cooks.distance(lm(SECPAY ∼ gini + GDP))
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